精英家教网 > 高中数学 > 题目详情
已知:圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程是
 
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:设出圆心的坐标为(a,-2a),利用两点间的距离公式表示出圆心到A的距离即为圆的半径,且根据圆与直线x+y=1相切,根据圆心到直线的距离等于圆的半径列出关于a的方程,求出方程的解得到a的值,确定出圆心坐标,进而求出圆的半径,根据圆心和半径写出圆的标准方程即可.
解答: 解:设所求圆心坐标为(a,-2a)
由条件得
(a-2)2+(-2a+1)2
=
|a-2a-1|
2
,化简得a2-2a+1=0,
∴a=1,
∴圆心为(1,-2),半径r=
2

∴所求圆方程为(x-1)2+(y+2)2=2
故答案为:(x-1)2+(y+2)2=2
点评:本题考查了直线与圆的位置关系,涉及的知识有两点间的距离公式,点到直线的距离公式,圆的标准方程,当直线与圆相切时,圆心到直线的距离等于圆的半径,常常利用此性质列出方程来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fn(x)=(1+2
x
n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的二项式系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的一元二次不等式kx2+2x-1<0的解集是R,则k的取值范围是          (  )
A、k<-1B、k<0
C、-1<k<0D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在[-6,6]上的偶函数,且f(4)>f(2),则下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(3)>f(2)
C、f(2)<f(-4)
D、f(-5)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={y|y=tanx,x∈B},B={x||x|≤
π
4
},则图中阴影部分表示的集合是(  )
A、[-1,1]
B、[-
π
4
π
4
]
C、[-1,-
π
4
)∪(
π
4
,1]
D、[-1,-
π
4
]∪[
π
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足
x-y+5≥0
x+y≥0
x≤3
,则z=
y+4
x
的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,并满足f(x)f(x+2)=-2,当1<x<2时,f(x)=x,则f(5.5)=(  )
A、1.5B、-1.5
C、5.5D、-5.5

查看答案和解析>>

同步练习册答案