精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过,且椭圆的离心率为.

(1)求椭圆的方程;

(2)设斜率存在的直线与椭圆交于两点,为坐标原点,,且与圆心为的定圆相切.直线)与圆交于两点,.面积的最大值.

【答案】(1).(2).

【解析】试题分析:(1)根据椭圆的定义和离心率的定义即可求出椭圆C的方程,(2)设P(x1,y1),Q(x2,y2),l的方程为y=kx+m,根据韦达定理,可得5m2=k2+1,再根据点到直线的距离公式分别求出|MN|=2,G到直线l′的距离为,结合三角形的面积公式和基本不等式即可求出答案.

解析:

(1)因为经过点,所以

又椭圆的离心率为,所以

所以椭圆的方程为.

(2)设设的方程为

,得

所以

因为

所以

整理得

所以的距离为

所以直线恒与定圆相切,即圆的方程为

的距离为,所以,且,所以

因为的距离为

所以

,当且仅当时取“=”

所以面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过原点且与直线相切于点

(Ⅰ)求圆的方程;

(Ⅱ)在圆上是否存在两点关于直线对称,且以线段为直径的圆经过原点?若存在,写出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高三年级的学生进行体检,现将高三男生的体重(单位:㎏)数据进行整理后分成五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65㎏属于偏胖,低于55㎏属于偏瘦,已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25、0.20、0.10、0.05,第二小组的频率数为400,则该校高三年级的男生总数和体重正常的频率分别为(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示(网格纸上正方形的边长为1),则该“堑堵”的表面积为(

A. 8 B. 16+8 C. 16+16 D. 24+16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中, DAB的中点.

(Ⅰ)求证:CD平面ABB1A1

(Ⅱ)求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆过点A(2,1),离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆相交于BC两点(异于点A),线段BCy轴平分,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为 ρsin( ﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案