精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1.\end{array}$若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围是(  )
A.(-1,-2)B.(-2,-3)C.(-2,-4)D.(-5,0)

分析 由分段函数知,分段讨论函数的单调性,从而求导可知f(x)在[0,1]上是增函数,从而化为函数f(x)在[0,1]与(1,+∞)上各有一个零点;从而求实数m的取值范围.

解答 解:当0≤x≤1时,
f(x)=2x3+3x2+m,
f′(x)=6x2+6x=6x(x+1)≥0;
故f(x)在[0,1]上是增函数,
故若使函数f(x)的图象与x轴有且只有两个不同的交点,
则函数f(x)在[0,1]与(1,+∞)上各有一个零点;
故m<0,
故$\left\{\begin{array}{l}{f(0)•f(1)≤0}\\{m+5>0}\end{array}\right.$,
解得,m∈(-5,0);
故选:D.

点评 本题考查了导数的综合应用及分段函数的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.复数z=$\frac{2i-1}{(1-i)^{2}}$=(  )
A.1+$\frac{1}{2}$iB.-1+$\frac{1}{2}$iC.-1-$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知非零向量$\overrightarrow a$,$\vec b$满足$|{\overrightarrow a}$|=1且$({\overrightarrow a-\overrightarrow b})•({\overrightarrow a+\overrightarrow b})=\frac{1}{2}$.
(Ⅰ)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求向量$\overrightarrow a$,$\vec b$的夹角;
(Ⅱ)在(Ⅰ)的条件下,求$|{\overrightarrow a-2\overrightarrow b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sinx+cosx,x∈R,则有下列结论:①此函数的图象关于直线x=-$\frac{π}{4}$对称;②此函数的最大值为$\sqrt{2}$;③此函数在区间(-$\frac{π}{4}$,$\frac{π}{4}$)上是增函数;④若角A是△ABC中的最小内角,则f(A)的值域为$(1,\sqrt{2}]$.则其中为真命题的序号为②③④.(填上你认为是真命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn=n2,数列{bn}的前n项和为 Tn=2bn-1.
(1)求数列{an}与{bn}的通项公式;
(2)求证:$\frac{1}{{{a_2}+{S_1}}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{{a_{n+1}}+{S_n}}}$<$\frac{3}{4}$;
(3)若满足不等式λbn-an+12<0的正整数n有且仅有3个,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.
对此,四名同学做出了以下的判断:
p:有95%的把握认为“这种血清能起到预防感冒的作用”
q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒
r:这种血清预防感冒的有效率为95%
s:这种血清预防感冒的有效率为5%
则上述结论中,正确结论的序号是p,r..(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF2⊥F1F2,|PF1|=$\frac{14}{3}$,|PF2|=$\frac{4}{3}$.
(1)求椭圆C的方程;
(2)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知y=21+ax在R上是减函数,则a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)某工厂加工某种零件有三道工序:粗加工、返修加工和精加工.每道工序完成时,都要对产品进行检验.粗加工的合格品进入精加工,不合格进入返修加工;返修加工的合格品进入精加工,不合格品作为废品
处理;精加工的合格品为成品,不合格品为废品.用流程图表示这个零件的加工过程.
(2)设计一个结构图,表示《数学选修1-2》第二章“推理与证明”的知识结构.

查看答案和解析>>

同步练习册答案