精英家教网 > 高中数学 > 题目详情
7.已知y=21+ax在R上是减函数,则a的取值范围是(-∞,0).

分析 根据指数函数的图象与性质,得出a的取值范围.

解答 解:∵y=21+ax=2×2ax在R上是减函数,
∴a<0,
即a的取值范围是(-∞,0).
故答案为:(-∞,0).

点评 本题考查了指数函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设 A(x1,y1),B(x2,y2)是函数f(x)=x-$\frac{1}{x-1}$的图象上任意两点,若 M为 A,B的中点,且 M的横坐标为1.
(1)求y1+y2
(2)若Tn=$\frac{1}{2}[{f({\frac{1}{2n}})+f({\frac{3}{2n}})+f({\frac{5}{2n}})+…+f({\frac{4n-1}{2n}})}]$,n∈N*,求 Tn
(3)已知数列{an}的通项公式an=$\frac{n+1}{2^n}$(n≥1,n∈N*),数列{an}的前n项和为Sn,若不等式2n•Sn<m•2n-4Tn+5对任意n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1.\end{array}$若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围是(  )
A.(-1,-2)B.(-2,-3)C.(-2,-4)D.(-5,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A、B分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,点P在C上且异于A、B两点,若直线AP与BP的斜率之积为-$\frac{1}{3}$,则C的离心率为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列运算结果中,正确的是(  )
A.a2a3=a5B.(-a23=(-a32C.($\sqrt{a}$-1)0=1D.(-a23=a6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察下面两个推理过程及结论:
(1)若锐角A,B,C满足A+B+C=π,以角A,B,C分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,
(2)若锐角A,B,C满足A+B+C=π,则($\frac{π}{2}$-$\frac{A}{2}$)+($\frac{π}{2}$-$\frac{B}{2}$)+($\frac{π}{2}$-$\frac{C}{2}$)=π,以角$\frac{π}{2}$-$\frac{A}{2}$,$\frac{π}{2}$-$\frac{B}{2}$,$\frac{π}{2}$-$\frac{C}{2}$分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:cos2$\frac{A}{2}$=cos2$\frac{B}{2}$+cos2$\frac{C}{2}$-2cos$\frac{B}{2}$cos$\frac{C}{2}$sin$\frac{A}{2}$.
则:若锐角A,B,C满足A+B+C=π,类比上面推理方法,可以得到的一个等式是sin22A=sin22B+sin22C+2sin2Bsin2Ccos2A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\frac{{{2^x}-{2^{-x}}}}{2},g(x)=\frac{{{2^x}+{2^{-x}}}}{2}$,下列结论错误的是(  )
A.函数f(x)的图象关于原点对称,函数g(x)的图象关于y轴对称
B.在同一坐标系中,函数f(x)的图象在函数g(x)的图象的下方
C.函数g(x)的值域是[1,+∞)
D.g(2x)=2f(x)g(x)在(-∞,+∞)恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足4$\overrightarrow{a}$2+$\overrightarrow{a}$$•\overrightarrow{b}$+$\overrightarrow{b}$2=1,求|2$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了了解某校学生对社会主义核心价值观的背诵掌握情况,拟采用分层抽样的方法从该校的高一、高二、高三这三个年级中共抽取7个班进行调查,已知该校的高一、高二、高三这三个年级分别有18、12、12个班级.
(Ⅰ)求分别从高一、高二、高三这三个年级中抽取的班级个数;
(Ⅱ)若从抽取的7个班级中随机抽取2个班级进行调查结果的对比,求这2个班级中至少有1个班级来自高一年级的概率.

查看答案和解析>>

同步练习册答案