精英家教网 > 高中数学 > 题目详情
2.下列运算结果中,正确的是(  )
A.a2a3=a5B.(-a23=(-a32C.($\sqrt{a}$-1)0=1D.(-a23=a6

分析 根据指数幂的运算性质即可求出答案.

解答 解:a2a3=a2+3=a5
(-a23=-a6≠(-a32=a6
($\sqrt{a}$-1)0=1,若成立,需要满足a≠1,
(-a23=-a6
故正确的是A,
故选:A.

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.三棱锥P-ABC中各条棱长都相等,点E是BC中点,则直线PE与AB所成角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn=n2,数列{bn}的前n项和为 Tn=2bn-1.
(1)求数列{an}与{bn}的通项公式;
(2)求证:$\frac{1}{{{a_2}+{S_1}}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{{a_{n+1}}+{S_n}}}$<$\frac{3}{4}$;
(3)若满足不等式λbn-an+12<0的正整数n有且仅有3个,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF2⊥F1F2,|PF1|=$\frac{14}{3}$,|PF2|=$\frac{4}{3}$.
(1)求椭圆C的方程;
(2)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在边长为2的正方体ABCD-A1B1C1D1中,P、Q分别为棱AB、A1D1的中点,M、N分别为面BCC1B1和DCC1D1上的点,一质点从点P射向点M,遇正方体的面反射(反射服从光的反射原理),反射到点N,再经平面反射,恰好反射至点Q,则三条线段PM、MN、NQ的长度之和为(  )
A.$\sqrt{22}$B.$\sqrt{21}$C.2$\sqrt{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知y=21+ax在R上是减函数,则a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某农民在一块耕地上种植一种作物,每年种植成本为800元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)300500
概率0.50.5
作物市场价格(元/kg)610
概率0.60.4
(Ⅰ)设X表示该农民在这块地上种植1年此作物的利润,求X的分布列;
(Ⅱ)若在这块地上连续3年种植此作物,求这3年中第二年的利润少于第一年的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知公差不为0的等差数列{an}的前n项和为Sn,满足a2,a3,a5成等比数列,S6=45.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令pn=$\frac{{{S_{n+2}}}}{{{S_{n+1}}}}+\frac{{{S_{n+1}}}}{{{S_{n+2}}}}$,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某次数学测试后从两个班中各随机的抽取10名学生的数学成绩,作出它们的茎叶图如图所示,已知甲班的中位数为a1,标准差为s1,乙班的中位数为a2,标准差为s2,则由茎叶图可得(  )
A.a1<a2,s1>s2B.a1<a2,s1<s2C.a1>a2,s1>s2D.a1>a2,s1<s2

查看答案和解析>>

同步练习册答案