·ÖÎö £¨1£©ÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉµÃ³ö£»
£¨2£©ÓÉ£¨1£©£¬µ±x1+x2=2ʱ£¬ÓÐf£¨x1£©+f£¨x2£©=2£¬ÀûÓô˽áÂۿɵÃTn£®
£¨3£©ÀûÓá°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³öSn£®²»µÈʽ2n•Sn£¼m•2n-4Tn+5£¬¼´m-3£¾$\frac{3n-8}{2^n}$ºã³ÉÁ¢£¬¹ÊÖ»Ðè$m-3£¾{£¨\frac{3n-8}{2^n}£©_{max}}$£®Áîbn=$\frac{3n-8}{2^n}$£¬Ñо¿Æäµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖªµãMΪÏß¶ÎABµÄÖе㣬Ôò£ºx1+x2=2£¬
¡à${y_1}+{y_2}=£¨{x_1}-\frac{1}{{{x_1}-1}}£©+£¨{x_2}-\frac{1}{{{x_2}-1}}£©={x_1}+{x_2}-£¨\frac{1}{{{x_1}-1}}+\frac{1}{{{x_2}-1}}£©=2$£®
£¨2£©ÓÉ£¨1£©£¬µ±x1+x2=2ʱ£¬ÓÐf£¨x1£©+f£¨x2£©=2£¬
¹Ê$f£¨\frac{1}{2n}£©+f£¨\frac{4n-1}{2n}£©=2£¬f£¨\frac{3}{2n}£©+f£¨\frac{4n-3}{2n}£©=2£¬¡$
ÓÉTn=$\frac{1}{2}[f£¨\frac{1}{2n}£©+f£¨\frac{3}{2n}£©+f£¨\frac{5}{2n}£©+¡+f£¨\frac{4n-1}{2n}£©]$£¬
Tn=$\frac{1}{2}[f£¨\frac{4n-1}{2n}£©+f£¨\frac{4n-3}{2n}£©+f£¨\frac{4n-5}{2n}£©+¡+f£¨\frac{1}{2n}£©]$£¬
2Tn=$\frac{1}{2}\{[f£¨\frac{1}{n}£©+f£¨\frac{2n-1}{n}£©]+[f£¨\frac{3}{n}£©+f£¨\frac{2n-3}{n}£©]+¡+[f£¨\frac{2n-1}{n}£©+f£¨\frac{1}{n}£©]\}$=$\frac{1}{2}$¡Á2n¡Á2=2n£¬
¡àTn=n£®
£¨3£©ÓÉÒÑÖª£ºSn=1+$\frac{3}{2^2}+\frac{4}{2^3}+¡+\frac{n+1}{2^n}$£¬
$\frac{1}{2}{S}_{n}$=$\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+¡+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$£¬$\frac{1}{2}{S_n}=1+\frac{1}{2^2}+\frac{1}{2^3}+¡+\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}=\frac{1}{2}+1-\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}=\frac{3}{2}-\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}$£¬
¡àSn=3-$\frac{n+3}{2^n}$£®
²»µÈʽ2n•Sn£¼m•2n-4Tn+5¼´3•2n-£¨n+3£©£¼m•2n-4n+5£¬
Ò²¼´£¨m-3£©•2n£¾3n-8£¬¼´m-3£¾$\frac{3n-8}{2^n}$ºã³ÉÁ¢£¬
¹ÊÖ»Ðè$m-3£¾{£¨\frac{3n-8}{2^n}£©_{max}}$£®
Áîbn=$\frac{3n-8}{2^n}$£¬
µ±n¡Ý2ʱ£¬bn-bn-1=$\frac{3n-8}{2^n}-\frac{3n-11}{{{2^{n-1}}}}=\frac{3n-8-6n+22}{2^n}=\frac{14-3n}{2^n}$£¬
µ±n¡Ü4ʱ£¬bn-bn-1£¾0£¬µ±n¡Ý5ʱ£¬bn-bn-1£¼0£¬
¹Êb1£¼b2£¼b3£¼b4£» b4£¾b5£¾b6£¾¡£¬
¹Ê£¨bn£©max=b4=$\frac{1}{4}$£¬
¡àm-3£¾$\frac{1}{4}$£¬½âµÃ£ºm£¾$\frac{13}{4}$£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦Óᢡ°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¡¢Öеã×ø±ê¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|x¡Ü2} | B£® | {x|x£¾0} | C£® | {x|0¡Üx£¼2} | D£® | {x|0£¼x£¼2} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1+$\frac{1}{2}$i | B£® | -1+$\frac{1}{2}$i | C£® | -1-$\frac{1}{2}$i | D£® | 1-$\frac{1}{2}$i |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=-2£¨x-30£©£¨x-60£© | B£® | y=-2£¨x-30£©£¨x-45£© | C£® | y=£¨x-45£©2+450 | D£® | y=-2£¨x-30£©2+450 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com