2£®Éè A£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=x-$\frac{1}{x-1}$µÄͼÏóÉÏÈÎÒâÁ½µã£¬Èô MΪ A£¬BµÄÖе㣬ÇÒ MµÄºá×ø±êΪ1£®
£¨1£©Çóy1+y2£»
£¨2£©ÈôTn=$\frac{1}{2}[{f£¨{\frac{1}{2n}}£©+f£¨{\frac{3}{2n}}£©+f£¨{\frac{5}{2n}}£©+¡­+f£¨{\frac{4n-1}{2n}}£©}]$£¬n¡ÊN*£¬Çó Tn£»
£¨3£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=$\frac{n+1}{2^n}$£¨n¡Ý1£¬n¡ÊN*£©£¬ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô²»µÈʽ2n•Sn£¼m•2n-4Tn+5¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉµÃ³ö£»
£¨2£©ÓÉ£¨1£©£¬µ±x1+x2=2ʱ£¬ÓÐf£¨x1£©+f£¨x2£©=2£¬ÀûÓô˽áÂۿɵÃTn£®
£¨3£©ÀûÓá°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³öSn£®²»µÈʽ2n•Sn£¼m•2n-4Tn+5£¬¼´m-3£¾$\frac{3n-8}{2^n}$ºã³ÉÁ¢£¬¹ÊÖ»Ðè$m-3£¾{£¨\frac{3n-8}{2^n}£©_{max}}$£®Áîbn=$\frac{3n-8}{2^n}$£¬Ñо¿Æäµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµãMΪÏß¶ÎABµÄÖе㣬Ôò£ºx1+x2=2£¬
¡à${y_1}+{y_2}=£¨{x_1}-\frac{1}{{{x_1}-1}}£©+£¨{x_2}-\frac{1}{{{x_2}-1}}£©={x_1}+{x_2}-£¨\frac{1}{{{x_1}-1}}+\frac{1}{{{x_2}-1}}£©=2$£®
£¨2£©ÓÉ£¨1£©£¬µ±x1+x2=2ʱ£¬ÓÐf£¨x1£©+f£¨x2£©=2£¬
¹Ê$f£¨\frac{1}{2n}£©+f£¨\frac{4n-1}{2n}£©=2£¬f£¨\frac{3}{2n}£©+f£¨\frac{4n-3}{2n}£©=2£¬¡­$
ÓÉTn=$\frac{1}{2}[f£¨\frac{1}{2n}£©+f£¨\frac{3}{2n}£©+f£¨\frac{5}{2n}£©+¡­+f£¨\frac{4n-1}{2n}£©]$£¬
Tn=$\frac{1}{2}[f£¨\frac{4n-1}{2n}£©+f£¨\frac{4n-3}{2n}£©+f£¨\frac{4n-5}{2n}£©+¡­+f£¨\frac{1}{2n}£©]$£¬
2Tn=$\frac{1}{2}\{[f£¨\frac{1}{n}£©+f£¨\frac{2n-1}{n}£©]+[f£¨\frac{3}{n}£©+f£¨\frac{2n-3}{n}£©]+¡­+[f£¨\frac{2n-1}{n}£©+f£¨\frac{1}{n}£©]\}$=$\frac{1}{2}$¡Á2n¡Á2=2n£¬
¡àTn=n£®
£¨3£©ÓÉÒÑÖª£ºSn=1+$\frac{3}{2^2}+\frac{4}{2^3}+¡­+\frac{n+1}{2^n}$£¬
$\frac{1}{2}{S}_{n}$=$\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+¡­+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$£¬$\frac{1}{2}{S_n}=1+\frac{1}{2^2}+\frac{1}{2^3}+¡­+\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}=\frac{1}{2}+1-\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}=\frac{3}{2}-\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}$£¬
¡àSn=3-$\frac{n+3}{2^n}$£®
²»µÈʽ2n•Sn£¼m•2n-4Tn+5¼´3•2n-£¨n+3£©£¼m•2n-4n+5£¬
Ò²¼´£¨m-3£©•2n£¾3n-8£¬¼´m-3£¾$\frac{3n-8}{2^n}$ºã³ÉÁ¢£¬
¹ÊÖ»Ðè$m-3£¾{£¨\frac{3n-8}{2^n}£©_{max}}$£®
Áîbn=$\frac{3n-8}{2^n}$£¬
µ±n¡Ý2ʱ£¬bn-bn-1=$\frac{3n-8}{2^n}-\frac{3n-11}{{{2^{n-1}}}}=\frac{3n-8-6n+22}{2^n}=\frac{14-3n}{2^n}$£¬
µ±n¡Ü4ʱ£¬bn-bn-1£¾0£¬µ±n¡Ý5ʱ£¬bn-bn-1£¼0£¬
¹Êb1£¼b2£¼b3£¼b4£» b4£¾b5£¾b6£¾¡­£¬
¹Ê£¨bn£©max=b4=$\frac{1}{4}$£¬
¡àm-3£¾$\frac{1}{4}$£¬½âµÃ£ºm£¾$\frac{13}{4}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦Óᢡ°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¡¢Öеã×ø±ê¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªRΪʵÊý¼¯£¬¼¯ºÏA={x|x2¡Ý4}£¬B={y|y=|tanx|}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{x|x¡Ü2}B£®{x|x£¾0}C£®{x|0¡Üx£¼2}D£®{x|0£¼x£¼2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¸´Êýz=$\frac{2i-1}{£¨1-i£©^{2}}$=£¨¡¡¡¡£©
A£®1+$\frac{1}{2}$iB£®-1+$\frac{1}{2}$iC£®-1-$\frac{1}{2}$iD£®1-$\frac{1}{2}$i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³É̳¡ÒÔÿ¼þ30ÔªµÄ¼Û¸ñ¹º½øÒ»ÖÖÍæ¾ß£®Í¨¹ýÊÔÏúÊÛ·¢ÏÖ£¬Öð½¥Ìá¸ßÊÛ¼Û£¬Ã¿ÌìµÄÀûÈóÔö´ó£¬µ±ÊÛ¼ÛÌá¸ßµ½45Ԫʱ£¬Ã¿ÌìµÄÀûÈó´ïµ½×î´óֵΪ450Ôª£¬ÔÙÌá¸ßÊÛ¼Ûʱ£¬ÓÉÓÚÏúÊÛÁ¿Öð½¥¼õÉÙÀûÈóϽµ£¬µ±ÊÛ¼ÛÌá¸ßµ½60Ԫʱ£¬Ã¿ÌìÒ»¼þÒ²Âô²»³öÈ¥£®ÉèÊÛ¼ÛΪx£¬ÀûÈóyÊÇxµÄ¶þ´Îº¯Êý£¬ÔòÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A£®y=-2£¨x-30£©£¨x-60£©B£®y=-2£¨x-30£©£¨x-45£©C£®y=£¨x-45£©2+450D£®y=-2£¨x-30£©2+450

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈýÀâ×¶P-ABCÖи÷ÌõÀⳤ¶¼ÏàµÈ£¬µãEÊÇBCÖе㣬ÔòÖ±ÏßPEÓëABËù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô·½³Ì$\frac{1}{3}$x3-x2+ax-a=0Ç¡ÓÐΨһ½â£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª·ÇÁãÏòÁ¿$\overrightarrow a$£¬$\vec b$Âú×ã$|{\overrightarrow a}$|=1ÇÒ$£¨{\overrightarrow a-\overrightarrow b}£©•£¨{\overrightarrow a+\overrightarrow b}£©=\frac{1}{2}$£®
£¨¢ñ£©Èô$\overrightarrow a•\overrightarrow b=\frac{1}{2}$£¬ÇóÏòÁ¿$\overrightarrow a$£¬$\vec b$µÄ¼Ð½Ç£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Çó$|{\overrightarrow a-2\overrightarrow b}$|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=sinx+cosx£¬x¡ÊR£¬ÔòÓÐÏÂÁнáÂÛ£º¢Ù´Ëº¯ÊýµÄͼÏó¹ØÓÚÖ±Ïßx=-$\frac{¦Ð}{4}$¶Ô³Æ£»¢Ú´Ëº¯ÊýµÄ×î´óֵΪ$\sqrt{2}$£»¢Û´Ëº¯ÊýÔÚÇø¼ä£¨-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{4}$£©ÉÏÊÇÔöº¯Êý£»¢ÜÈô½ÇAÊÇ¡÷ABCÖеÄ×îСÄڽǣ¬Ôòf£¨A£©µÄÖµÓòΪ$£¨1£¬\sqrt{2}]$£®ÔòÆäÖÐÎªÕæÃüÌâµÄÐòºÅΪ¢Ú¢Û¢Ü£®£¨ÌîÉÏÄãÈÏΪÊÇÕæÃüÌâµÄËùÓÐÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªy=21+axÔÚRÉÏÊǼõº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸