【题目】如图,四棱锥
中,底面
为菱形,直线
平面
,
,
,
是
上的一点,
.
![]()
(1)证明:直线
平面
;
(2)若
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
![]()
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长为
的正方形
沿对角线
折起,使得平面
平面
,在折起后形成的三棱锥
中,给出下列四个命题:①
;②异面直线
与
所成的角为
;③二面角
余弦值为
;④三棱锥
的体积是
.其中正确命题的序号是___________.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,
,且对任意
,都有
,数列
前n项的和
.
(1)若数列
是等比数列,求
的值和
;
(2)若数列
是等差数列,求
和
的关系式;
(3)
,当
时,求证:
是一个常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若
,则
”的逆否命题是“若
,则
”
B. “
”是“
”的充分不必要条件
C. 命题:“
,
”的否定是“
,
”
D. 若“
”为假命题,则
均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以直角坐标系的原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
的极坐标方程;
(2)设曲线
的极坐标方程为
,曲线
的极坐标方程为
,求三条曲线
,
,
所围成图形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com