精英家教网 > 高中数学 > 题目详情

【题目】给出以下结论:

①命题“若,则”的逆否命题“若,则”;

②“”是“”的充分条件;

③命题“若,则方程有实根”的逆命题为真命题;

④命题“若,则”的否命题是真命题.

其中错误的是__________.(填序号)

【答案】

【解析】

根据逆否命题的定义、充分条件的判定和四种命题的关系可依次判断各个选项得到结果.

对于①,根据逆否命题的定义可知:“若,则”的逆否命题为“若,则”, ①正确;

对于②,当时,,充分性成立,②正确;

对于③,原命题的否命题为“若,则方程无实根”;当时,,此时方程有实根,则否命题为假命题;

否命题与逆命题同真假,逆命题为假命题,③错误;

对于④,原命题的逆命题为“若,则”,可知逆命题为真命题;

否命题与逆命题同真假,否命题为真命题,④正确.

故答案为:③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当的单调区间和极值

(2)若直线是曲线的切线的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会为了解该校学生对2017年全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类.已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.

(1)根据题意建立列联表,并判断是否有的把握认为男生与女生对两会的关注有差异?

(2)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人进行回访,求这2人全是男生的概率.

参考公式和数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.

1)求恰好有一种新产品研发成功的概率;

2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的导函数的图象如图所示,则以下关于函数的判断:

①在区间内单调递增;

②在区间内单调递减;

③在区间内单调递增;

是极小值点;

是极大值点.

其中正确的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】33日,武汉大学人民医院的团队在预印本平台上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了11~29日的6013份病例数据,发现的患者为男性;进入重症监护病房的患者中,则有为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有为危重,而女性患者危重情况的为.也就是说男性的发病情况似乎普遍更严重.研究者总结道:男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:

中度感染

重度(包括危重)

总计

男性患者

女性患者

总计

1)求列联表中的数据的值;

2)能否有把握认为,新冠肺炎的感染程度和性别有关?

3)该学生实验小组打算从中度感染的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.

附表及公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a∈R.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当 时,设为曲线上任意两点,曲线在点处的切线斜率为k,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点在球的球面上,是边长为正三角形,分别是的中点,,则球的体积为_________________

查看答案和解析>>

同步练习册答案