分析 设出切点,求出导数,求得切线的斜率和方程,代入点(2,1),解方程可得切点,进而得到所求切线的方程.
解答 解:设切点为(m,m2),
y=x2的导数为y′=2x,
即有切线的斜率为k=2m,
切线的方程为y-m2=2m(x-m),
代入(2,1),可得1-m2=2m(2-m),
解得m=2±$\sqrt{3}$,
即有过点P(2,1)的切线方程为
y-1=2(2±$\sqrt{3}$)(x-2),
即为y=(4+2$\sqrt{3}$)x-7-4$\sqrt{3}$,或y=(4-2$\sqrt{3}$)x-7+4$\sqrt{3}$.
点评 本题考查导数的运用:求切线的方程,注意确定切点,考查导数的几何意义,直线方程的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | lg$\frac{2}{5}$ | B. | 1 | C. | -1 | D. | lg$\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{7π}{6}$ | D. | $\frac{11π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com