精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{{x}^{3}}{3}$+$\frac{m{x}^{2}+(m+n)x+1}{2}$(x∈R),且f(x)有两个极值点x1,x2,满足x1∈(0,1),x2∈(1,+∞),点P(m,n)在平面直角坐标系中表示的平面区域为D,若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围是(1,3).

分析 求出函数的导数,得到关于m,n的不等式组,画出满足条件的平面区域,结合图象求出a的范围即可.

解答 解:求导函数可得f'(x)=x2+mx+$\frac{1}{2}$(m+n),
依题意知,方程f'(x)=0有两个根x1、x2,且x1∈(0,1),x2∈(1,+∞),
构造函数f(x)=x2+mx+$\frac{1}{2}$(m+n),
∴$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\end{array}\right.$,∴$\left\{\begin{array}{l}{m+n>0}\\{2+3m+n<0}\end{array}\right.$,
如图示:

∵直线m+n=0,2+3m+n=0的交点坐标为(-1,1)
∴要使函数y=loga(x+4)(a>1)的图象上存在区域D上的点,
则必须满足1<loga(-1+4)
∴loga3<1,解得a<3
又∵a>1,
∴1<a<3,
故答案为:(1,3).

点评 本题考查了线性规划问题,考查导数的应用以及对数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计表如表:
份(x)2011年2012年2013年2014年2015年
水上狂欢节届编号x12345
外地游客人数y(单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-z)(1+2i)=i,则在复平面内表示复数z的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足{x≥0y≥04x+3y≤12,则z=y+12x-2的取值范围是(  )
A.[-12,14]B.[-52,14]C.(-∞,-12]∪[14,+∞)D.(-∞,-52]∪[14,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{e}^{x}}{{e}^{m}}$-lnx.
(Ⅰ)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;
(Ⅱ)当m≤-2时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在一个锐二面角的一个面内有一点,它到棱的距离等于到另一个平面的距离的2倍,则二面角大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-$\frac{1}{2}$x+$\frac{1}{4}$,若数列{bn}满足:b1=1,bn+1=2f(bn)(n∈N*).若对?n∈N*,都?M∈Z,使得$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<M恒成立,则整数M的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(a+e)x-1-lnx≤0(e是自然对数的底数)对任意x∈[$\frac{1}{e}$,2]都成立,则实数a的最大值为-e.

查看答案和解析>>

同步练习册答案