精英家教网 > 高中数学 > 题目详情

如图所示,AB是☉O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且BD·BE=BA·BF,求证:

(1)EF⊥FB;
(2)∠DFB+∠DBC=90°.

见解析

解析证明:(1)连接AD.

在△ADB和△EFB中,
∵BD·BE=BA·BF,
=.
又∠DBA=∠FBE,
∴△ADB∽△EFB,
又∵AB为☉O直径,
∴∠EFB=∠ADB=90°,即EF⊥FB.
(2)由(1)知∠ADB=∠ADE=90°,∠EFB=90°,
∴E、F、A、D四点共圆,
∴∠DFB=∠AEB.
又AB是☉O的直径,则∠ACB=90°,
∴∠DFB+∠DBC=∠AEB+∠DBC=90°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.

(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,延长线上的一点,是圆的割线,过点的垂线,交直线于点,交直线 于点,过点作圆的切线,切点为.

(1)求证:四点共圆;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:
 
(1)CDBC
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PT切⊙O于T,PAB、PDC是圆O的两条割线,PA=3,PD=4,PT=6,AD=2,求弦CD的长和弦BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.

(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

查看答案和解析>>

同步练习册答案