精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{alnx}{x}({a∈R})$的图象与直线x-2y=0相切,当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是(  )
A.{0}B.[0,1]C.[0,1)D.(-∞,0)

分析 先利用函数$f(x)=\frac{alnx}{x}({a∈R})$的图象与直线x-2y=0相切,求出a,再作出f(x)的图象,利用当函数g(x)=f(f(x))-t恰有一个零点时,即可实数t的取值范围.

解答 解:由题意,f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
取切点(m,n),则n=$\frac{alnm}{m}$,m=2n,$\frac{a(1-lnm)}{{m}^{2}}$=$\frac{1}{2}$,
∴a=e.∴f(x)=$\frac{elnx}{x}$,
f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,函数f(x)在(0,e)上单调递增,(e,+∞)上单调递减,
f(1)=0,x→+∞,f(x)→0,
由于f(e)=1,f(1)=0,
∴当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是{0},
故选A.

点评 本题考查导数知识的运用,考查导数的几何意义,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)是R上的偶函数,且满足f(x+3)=f(x),当x∈[-$\frac{3}{2}$,0]时,f(x)=-2x,则f(-5)=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}$(x>-1).
(Ⅰ)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某淘宝商城专营店经销某种产品,已知每个月的利润Y(单位:万元)是关于该月的交易量X(单位:件)的一次函数,当X=150时,Y=4,且X每增加100,Y增加2.该店记录了连续12个月的交易量X,整理得如表:
交易量X(件)150180200250320

频率
$\frac{1}{12}$$\frac{1}{6}$
a
$\frac{1}{4}$$\frac{1}{6}$
(1)求a的值;      
(2)求这12个月的月利润(单位:万元)的平均数;
(3)假定以这12个月记录的各交易量的频率作为各交易量发生的概率,求2017年3月份该产品利润不低于5万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线C:y2=3x的焦点为F,点A为C上一点,若|FA|=3,则直线FA的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x∈R),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(-2,4]上的零点个数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={-1,0,1},N={y|y=1-cos$\frac{π}{2}$x,x∈M},则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$a=\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,则二项式${(x+\frac{a}{{\sqrt{x}}})^6}$展开式中的常数项是240.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,已知实数x,y满足|x|≤2,|y|≤2,设z=min{x+y,2x-y},则z的取值范围为[-6,3].

查看答案和解析>>

同步练习册答案