精英家教网 > 高中数学 > 题目详情
18.已知$a=\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,则二项式${(x+\frac{a}{{\sqrt{x}}})^6}$展开式中的常数项是240.

分析 利用定积分求出a,写出展开式的通项公式,令x的指数为0,即可得出结论.

解答 解:$a=\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$=sinx${|}_{-\frac{π}{2}}^{\frac{π}{2}}$=2,则二项式${(x+\frac{a}{{\sqrt{x}}})^6}$=${(x+\frac{2}{{\sqrt{x}}})^6}$展开式的通项公式为${T_{r+1}}=C_6^r{2^r}{x^{6-\frac{3}{2}r}}$,
令$6-\frac{3}{2}r=0$,求得r=4,所以二项式${(x+\frac{a}{{\sqrt{x}}})^6}$展开式中的常数项是$C_6^4$×24=240.
故答案为:240.

点评 本题考查定积分知识的运用,考查二项式定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.数列{an}中,a1=2,a2=5,an+1=an+2+an,则a6等于(  )
A.-3B.-4C.-5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\frac{alnx}{x}({a∈R})$的图象与直线x-2y=0相切,当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是(  )
A.{0}B.[0,1]C.[0,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线E的焦点为F,准线为l,过F的直线m与E交于A,B两点,C,D分别为A,B在l上的射影,M为AB的中点,若m与l不平行,则△CMD是(  )
A.等腰三角形且为锐角三角形B.等腰三角形且为钝角三角形
C.等腰直角三角形D.非等腰的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)在R上的导函数为f′(x),对?x∈R有f(x)+f(-x)=x2,在(0,+∞)上f′(x)-x<0,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是(  )
A.[2,+∞)B.(-∞,2]C.(-∞,2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|x-2|的最小值为m.
(Ⅰ)求实数m的值;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.Sn为数列{an}的前n项和,已知Sn+1=λSn+1(λ是大于0的常数),且a1=1,a3=4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,数列{an}满足Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{({a}_{n}+2)^{2}}$,它的前n项和为Tn,求证:对任意正整数n,都有Tn<$\frac{1}{2}$成立.

查看答案和解析>>

同步练习册答案