精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos$\frac{A+C}{2}$=$\frac{1}{2}$.
(1)若a=3,b=$\sqrt{7}$,求c的值;
(2)若f(A)=sin$\frac{A}{2}$($\sqrt{3}$cos$\frac{A}{2}$-sin$\frac{A}{2}$)+$\frac{1}{2}$,求f(A)的取值范围.

分析 (1)由三角形内角和定理表示出$\frac{A+C}{2}$,利用诱导公式化简求出B的度数,再利用余弦定理求出c的值即可;
(2)f(A)解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的三角函数,由A的范围求出f(A)的范围即可.

解答 解:(1)在△ABC中,A+C=π-B,
∴cos$\frac{A+C}{2}$=cos$\frac{π-B}{2}$=sin$\frac{B}{2}$=$\frac{1}{2}$,
∴$\frac{B}{2}$=$\frac{π}{6}$,即B=$\frac{π}{3}$,
由余弦定理:b2=a2+c2-2accosB,得c2-3c+2=0,
解得:c=1或c=2;
(2)f(A)=$\frac{\sqrt{3}}{2}$sinA-$\frac{1-cosA}{2}$+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA=sin(A+$\frac{π}{6}$),
由(1)A+C=π-B=$\frac{2π}{3}$,得到A∈(0,$\frac{2π}{3}$),
∴A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
则f(A)的范围是($\frac{1}{2}$,1].

点评 此题考查了余弦定理,以及三角函数中的恒等变换应用,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)=x2+2x,则f′(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,则实数a的值为(  )
A.-$\frac{3}{2}$B.0C.-$\frac{3}{2}$ 或 0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某工厂随机抽取部分工人调查其上班路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),若上班路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中a的值;
(2)如果上班路上所需时间不少于1小时的工人可申请在工厂住宿,若招工2400人,请估计所招工人中有多少名工人可以申请住宿;
(3)该工厂工人上班路上所需的平均时间大约是多少分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用斜二侧法画水平放置的△ABC的直观图,得到如图所示等腰直角△A′B′C′.已知点O′是斜边B′C′的中点,且A′O′=1,则△ABC的BC边上的高为(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\root{3}{\sqrt{2}}$=(  )
A.2${\;}^{\frac{5}{6}}$B.2${\;}^{\frac{3}{2}}$C.2${\;}^{\frac{1}{6}}$D.2${\;}^{(\frac{1}{2})^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a>0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$.
(Ⅰ)求CD的长;
(Ⅱ)求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且$\frac{1}{a_2}$,$\frac{1}{a_4}$,$\frac{1}{a_8}$成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

同步练习册答案