分析 (Ⅰ)利用已知列出关于工程师了公差方程求出公差;得到通项公式;
(Ⅱ)利用(Ⅰ)的结论,将通项公式代入,利用裂项求和证明即可.
解答 解:(Ⅰ)设{an}的公差为d.
因为$\frac{1}{a_2},\frac{1}{a_4},\frac{1}{a_8}$成等比数列,所以${(\frac{1}{a_4})^2}=\frac{1}{a_2}•\frac{1}{a_8}$.
即${(\frac{1}{{{a_1}+3d}})^2}=\frac{1}{{{a_1}+d}}•\frac{1}{{{a_1}+7d}}$.
化简得${({a_1}+3d)^2}=({a_1}+d)•({a_1}+7d)$,即d2=a1d.
又a1=1,且d≠0,解得d=1.
所以有an=a1+(n-1)d=n. …(7分)
(Ⅱ)由(Ⅰ)得:$\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{n•(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
所以${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}<1$.
因此,Tn<1. …(13分)
点评 本题考查了等差数列和等比数列性质、通项公式求法以及裂项求和的方法;求出通项公式正确裂项求和是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{15}{4}$ | B. | $-\frac{{\sqrt{15}}}{2}$ | C. | $\frac{15}{4}$ | D. | $\frac{{\sqrt{15}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | $\{x|\frac{1}{2}<x<1,x∈R\}$ | C. | {x|-2<x<2,x∈R} | D. | {x|-2<x<1,x∈R} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com