精英家教网 > 高中数学 > 题目详情
20.已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且$\frac{1}{a_2}$,$\frac{1}{a_4}$,$\frac{1}{a_8}$成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和为Tn,求证:Tn<1.

分析 (Ⅰ)利用已知列出关于工程师了公差方程求出公差;得到通项公式;
(Ⅱ)利用(Ⅰ)的结论,将通项公式代入,利用裂项求和证明即可.

解答 解:(Ⅰ)设{an}的公差为d.
因为$\frac{1}{a_2},\frac{1}{a_4},\frac{1}{a_8}$成等比数列,所以${(\frac{1}{a_4})^2}=\frac{1}{a_2}•\frac{1}{a_8}$.
即${(\frac{1}{{{a_1}+3d}})^2}=\frac{1}{{{a_1}+d}}•\frac{1}{{{a_1}+7d}}$.
化简得${({a_1}+3d)^2}=({a_1}+d)•({a_1}+7d)$,即d2=a1d.
又a1=1,且d≠0,解得d=1.
所以有an=a1+(n-1)d=n.                    …(7分)
(Ⅱ)由(Ⅰ)得:$\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{n•(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
所以${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}<1$.
因此,Tn<1.                                  …(13分)

点评 本题考查了等差数列和等比数列性质、通项公式求法以及裂项求和的方法;求出通项公式正确裂项求和是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos$\frac{A+C}{2}$=$\frac{1}{2}$.
(1)若a=3,b=$\sqrt{7}$,求c的值;
(2)若f(A)=sin$\frac{A}{2}$($\sqrt{3}$cos$\frac{A}{2}$-sin$\frac{A}{2}$)+$\frac{1}{2}$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=$\sqrt{7}$.
(Ⅰ)求$\frac{sin∠CAD}{sin∠D}$的值;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,A、B、C所对的边分别为a、b、c,已知a2+b2-c2=$\sqrt{3}$ab,且acsinB=2$\sqrt{3}$sinC,则$\overrightarrow{CA}$•$\overrightarrow{CB}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三角形ABC外接圆O的半径为1(O为圆心),且2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=0,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$•$\overrightarrow{BC}$等于(  )
A.$-\frac{15}{4}$B.$-\frac{{\sqrt{15}}}{2}$C.$\frac{15}{4}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x(x-1)<0,x∈R},B={x|$\frac{1}{2}$<x<2,x∈R},那么集合A∩B=(  )
A.B.$\{x|\frac{1}{2}<x<1,x∈R\}$C.{x|-2<x<2,x∈R}D.{x|-2<x<1,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x-cosx在点($\frac{π}{2}$,$\frac{π}{2}$)处的切线的斜率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求$\underset{lim}{n→∞}\frac{f(n+1)}{f(n)}$的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100

查看答案和解析>>

同步练习册答案