精英家教网 > 高中数学 > 题目详情
10.已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求$\underset{lim}{n→∞}\frac{f(n+1)}{f(n)}$的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100

分析 (1利用q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$,即可得出.
(2)利用等比数列的求和公式可得f(n)=$\frac{4}{3}({4}^{n}-1)$,f(n+1)=$\frac{4}{3}({4}^{n+1}-1)$.再利用极限的运算法则即可得出.
(3)由a1b1+a2b2+…+anbn=(n-1)•2n+1+2,当n≥2时,a1b1+a2b2+…+an-1bn-1=(n-2)•2n+2,两式相减得:可得bn=$\frac{n•{2}^{n}}{{2}^{n}}$=n(n≥2),b1=1满足上式,可得bn=n.设Sn表示数列{cn}的前n项之和,S100=(a1+a2+…+a50)+(b1+b2+…+b50),即可得出.

解答 解:(1)∵a1=2,a5=32,
∴q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$=2,
∴an=2n
(2)f(n)=a2+a4+…+a2n=22+24+…+22n=$\frac{4({4}^{n}-1)}{4-1}$=$\frac{4}{3}({4}^{n}-1)$,f(n+1)=$\frac{4}{3}({4}^{n+1}-1)$.
∴$\underset{lim}{n→∞}\frac{f(n+1)}{f(n)}$=$\underset{lim}{n→∞}$$\frac{{4}^{n+1}-1}{{4}^{n}-1}$=$\underset{lim}{n→∞}\frac{4-\frac{1}{{4}^{n}}}{1-\frac{1}{{4}^{n}}}$=4.
(3)∵a1b1+a2b2+…+anbn=(n-1)•2n+1+2,
∴当n≥2时,a1b1+a2b2+…+an-1bn-1=(n-2)•2n+2,
两式相减得:anbn=(n-1)•2n+1+2-(n-2)•2n+2=n•2n,即bn=$\frac{n•{2}^{n}}{{2}^{n}}$=n(n≥2),
又∵a1b1=2,即b1=1满足上式,
∴bn=n;
设Sn表示数列{cn}的前n项之和,
S100=(a1+a2+…+a50)+(b1+b2+…+b50
=2+22+…+250+1+2+…+50
=$\frac{2({2}^{50}-1)}{2-1}$+$\frac{50×51}{2}$
=251+1273.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且$\frac{1}{a_2}$,$\frac{1}{a_4}$,$\frac{1}{a_8}$成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={x|1<log2x<3,x∈Z},B={x|5≤x<9},则A∩B=(  )
A.[5,e2B.[5,7]C.{5,6,7}D.{5,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.向量$\overrightarrow{a}$=(4,-3),则与$\overrightarrow{a}$同向的单位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(k,4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则下列结论正确的是(  )
A.k=-6B.k=2C.k=6D.k=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式x2-2mx+1≥0对一切实数x都成立,则实数m的取值范围是-1≤m≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.集合A={x|$\frac{x+2}{x-2}$≤0,x∈R},B={x||x-1|<2,x∈R}.
(1)求A、B;
(2)求B∩(∁UA).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的侧面积为(  )
A.$\frac{3}{2}π$B.$\frac{3}{2}π+\sqrt{3}$C.$π+\sqrt{3}$D.$\frac{5}{2}π+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$f(x)=-\sqrt{4+\frac{1}{x^2}}$,数列{an}的前n项和为Sn,点${P_n}({a_n},-\frac{1}{{{a_{n+1}}}})$,在曲线y=f(x)上(n∈N*),且a1=1,an>0.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且满足$\frac{{{T_{n+1}}}}{a_n^2}=\frac{T_n}{{a_{n+1}^2}}+16{n^2}-8n-3$,求出b1的值,使得数列{bn}是等差数列;(3)求证:${S_n}>\frac{1}{2}(\sqrt{4n+1}-1),n∈{N^*}$.

查看答案和解析>>

同步练习册答案