分析 (Ⅰ)由等边三角形的性质及已知可得AC=2CD,进而利用正弦定理即可得解$\frac{sin∠CAD}{sin∠D}$的值为$\frac{1}{2}$.
(Ⅱ)设CD=x,则可求BC=2x,BD=3x,利用余弦定理即可解得x的值,进而得解CD的值.
解答 (本题满分为13分)
解:(Ⅰ)∵△ABC是等边三角形,∴AC=BC,
又∵BC=2CD,∴AC=2CD,![]()
∴在△ACD中,由正弦定理可得:$\frac{CD}{sin∠CAD}=\frac{AC}{sin∠D}$,
∴$\frac{sin∠CAD}{sin∠D}$=$\frac{CD}{AC}$=$\frac{1}{2}$.
(Ⅱ)设CD=x,则BC=2x,
∴BD=3x,
∵△ABD中,AD=$\sqrt{7}$,AB=2x,∠B=$\frac{π}{3}$,
∴由余弦定理可得:AD2=AB2+BD2-2AB•BD•cos∠B,
即:7=4x2+9x2-2x×3x,解得:x=1,
∴CD=1.
点评 本题主要考查了等边三角形的性质,正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想和数形结合思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$ | B. | 0 | C. | -$\frac{3}{2}$ 或 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $-\frac{3}{4}$ | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [5,e2) | B. | [5,7] | C. | {5,6,7} | D. | {5,6,7,8} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com