| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由不等式|f(x+t)-1|<2,求出f(x+t)的范围,然后根据f(x)的图象经过点A(0,3)和点B(3,-1),得到f(0)=3和f(3)=-1的值,得到函数值的大小关系,根据函数f(x)在R上单调递减,得到其对应的自变量x的范围,即为原不等式的解集,根据已知不等式的解集(-1,2),列出关于t的方程,求出方程的解即可得到t的值.
解答 解:由不等式|f(x+t)-1|<2,
得到:-2<f(x+t)-1<2,即-1<f(x+t)<3,
又因为f(x)的图象经过点A(0,3)和点B(3,-1),
所以f(0)=3,f(3)=-1,
所以f(3)<f(x+t)<f(0),又f(x)在R上为减函数,
则3>x+t>0,即-t<x<3-t,解集为(-t,3-t),
∵不等式的解集为(-1,2),
∴-t=-1,3-t=2,
解得t=1.
故选:C.
点评 此题考查了绝对值不等式的解法,以及函数单调性的性质.把不等式解集中的-1和3分别换为f(3)和f(0)是解本题的突破点,同时要求学生熟练掌握函数单调性的性质.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com