精英家教网 > 高中数学 > 题目详情
19.设命题p:函数y=ax+2在R上为减函数,命题q:曲线y=x2+ax+1与x轴交于不同的两点.若p∨q为真命题,p∧q为假命题,求a的取值范围.

分析 若p∨q为真命题,p∧q为假命题,则p与q为一真一假,进而可得a的取值范围.

解答 解:若p真,由函数y=ax+2在R上为减函数,得a<0;
若q真,则△=a2-4>0,解得a<-2或a>2…(3分)
由p∨q为真,p∧q为假,知p与q为一真一假.…(5分)
若p真q假,则$\left\{\begin{array}{l}a<0\\-2≤a≤2\end{array}\right.$,所以-2≤a<0;  …(7分)
若p假q真,则$\left\{\begin{array}{l}a≥0\\ a<-2或a>2\end{array}\right.$,所以a>2.
综上可得,-2≤a<0或a>2…(10分)

点评 本题以命题的真假判断与应用为载体,考查了复合命题,一次函数的图象和性质,二次函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)满足:①定义域为R;②(3,1),都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1,则方程$f(x)=\frac{1}{2}{log_2}|x|$在区间[-3,5]内解的个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.①“?x∈R,x2-3x+3=0”的否定是真命题;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”必要不充分条件;
③“若xy=0,则x,y中至少有一个为0”的否命题是真命题;
④曲线$\frac{x^2}{25}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1(9<k<25)$有相同的焦点;
⑤过点(1,3)且与抛物线y2=4x相切的直线有且只有一条.
其中是真命题的有:①③④(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(1)记甲班“口语王”人数为m,乙班“口语王”人数为n,则m,n的大小关系是m<n.
(2)甲班10名同学口语成绩的方差为86.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=lgm+(lgn)i,其中i是虚数单位.若复数z在复平面内对应的点在直线y=-x上,则mn的值等于(  )
A.0B.1C.10D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于x的不等式m<$\frac{e^x}{{x{e^x}-x+1}}$有且仅有两个整数解,则实数m的取值范围为(  )
A.$(\frac{1}{2e-1},1)$B.$(\frac{e^2}{{2{e^2}-1}},1)$C.$[\frac{1}{2e-1},1)$D.$[\frac{e^2}{{2{e^2}-1}},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,若a2=1,a3=2,则S4=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知线段AB的端点B的坐标是(8,6),端点A在圆(x+1)2+y2=4上运动,则线段AB的中点P的轨迹方程为(x-$\frac{7}{2}$)2+(y-3)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从700袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将700袋牛奶按001,002,…,700进行编号,如果从随机数表第3行第1组数开始向右读,最先读到的5袋牛奶的编号是614,593,379,242,203,请你以此方式继续向右读数,随后读出的3袋牛奶的编号是104、088、346.(下列摘取了随机数表第1行至第5行)

查看答案和解析>>

同步练习册答案