精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b;
(2)求函数f(x)的单调区间;
(3)当a=3时,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),证明:线段MN与曲线f(x)存在异于M、N的公共点.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1):已知f′(-1)=0,根据求导数的方法先求出f′(x),把x=-1代入得到关于a和b的等式解出b即可;
(2):令f′(x)=0求出稳定点时x的值1-2a和-1,根据1-2a和-1的大、小、相等分三种情况讨论函数的增减性即可;
(3):由(1)求出极值点,由两点式求出直线方程,与曲线方程联立判断有无其他公共点.
解答: 解:(1)依题意,得f'(x)=x2+2ax+b
由f'(-1)=1-2a+b=0得b=2a-1
(2)由(1)得f(x)=
1
3
x3+ax2+(2a-1)x

故f'(x)=x2+2ax+2a-1=(x+1)(x+2a-1)
令f'(x)=0,得x=-1或x=1-2a
当x变化时,f'(x)与f(x)的变化情况如下表:
x(-∞,1-2a)(1-2a,-1)(-1+∞)
f'(x)+-+
f(x)单调递增单调递减单调递增
①当a>1时,1-2a<-1由此得,函数f(x)的单调增区间为(-∞,1-2a)和(-1,+∞),单调减区间为(1-2a,-1).
②当a=1时,1-2a=-1.此时f′(x)≥0恒成立,且仅在x=-1处f′(x)=0故函数f(x)的单调增区间为R.
③当a<1时,1-2a>-1同理可得函数f(x)的单调增区间为(-∞,-1)和(1-2a,+∞)单调减区间为(-1,1-2a).
(3):当a=3时,f(x)=
1
3
x3+3x2+5x,
由得f'(x)=x2+6x+5,解得x=-5或x=-1,
由(2)知函数f(x)的单调增区间为(-∞,-5)和(-1,+∞),单调减区间为(-5,-1)
∴函数f(x)在x1=-5,x2=-1处取得极值,
M(-5,
25
3
),N(-1,-
7
3
)

∴直线MN的方程为,y=-
8
3
x-5.
y=
1
3
x3+3x2+5x
y=-
8
3
x-5
消去y得:得x3+9x2+23x+15=0,
令F(x)=x3+9x2+23x+15.
易得F(-4)=3>0,F(-2)=-3<0,而F(x)的图象在(-4,-2)内是一条连续不断的曲线,
故F(x)在(-4,-2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N的公共点.
点评:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=x+yi(x,y∈R)满足:|z+
5
|-|z-
5
|=2a,且z在复平面上的对应点P的轨迹C经过点(4,
3

(1)求C的轨迹;
(2)若过点A(4,0),倾斜角为
π
4
的直线l交轨迹C于M、N两点,求△OMN的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),其长轴长是短轴长的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为
5
π.
(1)求椭圆C的方程;
(2)若直线l与椭圆相交于A,B两点,设直线OA,l,OB的斜率分别为k1,k,k2(其中k>0).△OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2,若k1,k,k2恰好构成等比数列,求
S1+S2
S
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-2-lnx(a∈R),当x>0时,求证f(x)-ax+ex>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心为原点O,离心率e=
2
2
,其一个焦点在抛物线C2:y2=2px的准线上,若抛物线C2与直线l:x-y+
6
=0相切.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)若点T满足:
OT
=
MN
+2
OM
+
ON
,其中M,N是C1上的点,直线OM与ON的斜率之积为-
1
2
,试说明:是否存在两个定点F1,F2,使得|TF1|+|TF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率e=
3
2
.它有一个顶点恰好是抛物线x2=4y的焦点.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|QP|=|PC|.
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线x=2交于点R,D为线段RB的中点.试判断直线CD与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,函数y=g(x)为函数f(x)的反函数.
(Ⅰ)当x>1时,g(x)>ax+1恒成立,求a的取值范围;
(Ⅱ)对于x>0,均有f(x)≤bx≤g(x),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx)向量
b
=(cosx,-sinx),f(x)=
a
b

(Ⅰ)求函数 g(x)=f(x)+sin2x的最小正周期和对称轴方程;
(Ⅱ)若x是第一象限角且3f(x)=4sin2x,求tan(x+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆中a=2b,过P(2,0),则椭圆的标准方程为
 

查看答案和解析>>

同步练习册答案