精英家教网 > 高中数学 > 题目详情
6.一个半球与一个正四棱锥组成的几何体的正视图与俯视图如图所示,其中正视图中的等腰三角形的腰长为$\sqrt{3}$.若正四棱锥的顶点均在该半球所在球的球面上,则此球的半径为(  )
A.2B.$\frac{3}{2}$$\sqrt{2}$C.$\frac{12}{5}$$\sqrt{5}$D.$\sqrt{6}$

分析 利用正视图中的等腰三角形的腰长为$\sqrt{3}$,结合勾股定理,即可得出结论.

解答 解:由题意,设球的半径为r,则3=r2+($\frac{1}{2}$r)2
∴r=$\frac{12}{5}\sqrt{5}$.
故选:C.

点评 本题考查三视图,考查勾股定理,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知(ω+x)6=a0+a1x+a2x2+…+a6x6,其中ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$$\overrightarrow{i}$,则|a0|+|a1|+…+|a6|等于(  )
A.1B.26C.$\frac{{2}^{6}+1}{2}$D.$\frac{{2}^{6}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数f(x)的定义域为集合A,且函数f(x-1)的定义域是[5,17].
(Ⅰ)求集合A;
(Ⅱ)设函数h(x)=(log2x)2-alog${\;}_{\sqrt{2}}$x+5(x∈A),求函数h(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数,在其定义域内,既是奇函数又是增函数的是(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=2xC.y=x3D.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-3|+|x+1|.
(1)作出y=f(x)的图象;
(2)解不等式f(x)≤6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,方程|x|+|y|=4所表示的曲线是以(0,4),(4,0),(0,-4),(-4,0)为顶点的正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,2),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\sqrt{3x-{x^2}}$的定义域为(  )
A.[-3,0]B.(-∞,-3]∪[0,+∞)C.[0,3]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

同步练习册答案