精英家教网 > 高中数学 > 题目详情
16.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

分析 (1)若命题p为真命题,根据椭圆的定义和方程建立不等式关系,即可求实数m的取值范围;
(2)根据复合命题的关系得到p,q为一个真命题,一个假命题,然后求解即可.

解答 解:(1)∵方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,
∴$\left\{\begin{array}{l}{m+1>0}\\{3-m>0}\\{3-m>m+1}\end{array}\right.$,即$\left\{\begin{array}{l}{m>-1}\\{m<3}\\{m<1}\end{array}\right.$,
即-1<m<1,
∴若命题p为真命题,求实数m的取值范围是(-1,1);
(2)若“p∧q”为假命题,“p∨q”为真命题,
则p,q为一个真命题,一个假命题,
若关于x的方程x2+2mx+2m+3=0无实根,
则判别式△=4m2-4(2m+3)<0,
即m2-2m-3<0,得-1<m<3.
若p真q假,则$\left\{\begin{array}{l}{-1<m<1}\\{m≥3或m≤-1}\end{array}\right.$,此时无解,
柔p假q真,则$\left\{\begin{array}{l}{m≥1或m≤-1}\\{-1<m<3}\end{array}\right.$,得1≤m<3,
综上,实数m的取值范围是[1,3).

点评 本题主要考查复合命题的真假关系以及应用,求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①如果两个命题互为逆否命题,那么它们的真假性相同;
②命题“若a,b都是偶数,则a+b是偶数”的否命题为真命题;
③已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支;
④对于空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1是四点P,A,B,C共面的充要条件.
其中所有正确的命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.五名学生在某一次考试中的数学成绩(x分)与物理成绩(y分)具有线性相关关系,且线性回归方程为$\widehat{y}=0.75x+10$,数学平均分$\widehat{x}=100$分,计算后发现,物理一个分值为2分的题的答案出错,更改前这五名同学此题都没有得分,更改后这五名同学都得2分,假设更改后数学成绩(x分)与物理成绩(y分)还具有线性相关性,则更改后的x与y的线性回归方程为y=0.75x+12
(附:线性回归方程为$\widehat{y}=\widehat{b}x+\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-b\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x).
(1)若函数g(x)=f(e4x)+ax,且g(x)是偶函数,求a的值;
(2)若h(x)=f(x)[f (x)+2m-1]在区间[e-1,e3-1]上有最小值-4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线x+my-2=0的倾斜角为30°,则实数m的值是(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若不等式$\frac{{x}^{2}-8x+20}{m{x}^{2}+2(m+1)x+9m+4}$>0对任意实数x恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据上海高考改革方案,2017年,高中生可从思想政治、历史、地理、物理、化学、生命科学6门学业考试科目中选3门参加等级性考试,并且这3门学业考试科目等级考试成绩将这算,计入高考总分,上海37所本科高校,从目前公布的1096个专业(类)的选考科目老看,学生选考物理可以满足1070个专业选科要求,覆盖率97.63%;选考化学可以满足992个专业选科要求,覆盖率为90.51%;选考生命科学可以满足877个专业选科要求,覆盖率为80.02%,地理、历史、思想政治的覆盖率分别为64.05%、63.5%、62.14%,为了进一步调查学生选考的意向,某机构对本市两所学校各100名高一新生进行了选考调查,且规定从6门学业考试中每一位学生只能选择1门,结果如下:
  物理化学 生命科学  政治 历史 地理
 甲校 35 20 15 7 8 15
 乙校 30 14 16 11 14 15
(1)分别计算甲乙两校选考理科专业的频率,若将该频率视为概率,求从乙校高一新生中随机选取3人,其中恰有2人选考理科专业的概率;
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC内角A,B,C的对边分别为a,b,c.已知$a=3,A=60°,b=\sqrt{6}$,则B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个半球与一个正四棱锥组成的几何体的正视图与俯视图如图所示,其中正视图中的等腰三角形的腰长为$\sqrt{3}$.若正四棱锥的顶点均在该半球所在球的球面上,则此球的半径为(  )
A.2B.$\frac{3}{2}$$\sqrt{2}$C.$\frac{12}{5}$$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案