精英家教网 > 高中数学 > 题目详情
6.给出下列四个命题:
①如果两个命题互为逆否命题,那么它们的真假性相同;
②命题“若a,b都是偶数,则a+b是偶数”的否命题为真命题;
③已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支;
④对于空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1是四点P,A,B,C共面的充要条件.
其中所有正确的命题的序号为①④.

分析 直接由互为逆否命题的两个命题共真假判断①;写出命题的否命题并判断真假判断②;由双曲线定义判断③;由共面向量基本定理可知④正确.

解答 解:由互为逆否命题的两个命题共真假可知命题①正确;
命题“若a,b都是偶数,则a+b是偶数”的否命题为:“若a,b不都是偶数,则a+b不是偶数”,是假命题.如a=1,b=3不都是偶数,但a+b=4是偶数;
已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为一条射线,故③错误;
由共面向量基本定理可知,对于空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1是四点P,A,B,C共面的充要条件,故④正确.
故答案为:①④.

点评 本题考查命题的真假判断与应用,考查了命题的逆命题、否命题以及逆否命题的真假判断,考查双曲线的定义,考查共面向量基本定理及其应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(a-2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知g(x)=x2-2x-3,f(x)=ax+2.(a>0).
(1)若对于x∈[3,6]时,总存在x0,使得f(x0)=g(x0),求a的取值范围;
(2)若g(x-b)=0在(-1,6)上恒有一个实数根.求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,{\;}^{\;}x≤0\\{x^{\frac{1}{2}}},{\;}^{\;}{\;}^{\;}x>0\end{array}$如果f(x0)>1,则x0的取值范围是(  )
A.(-1,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某路段车辆检测点,随机抽取了400辆过往汽车进行车速检测,检测结果的频率分布直方图如图所示,则这400辆汽车中车速大于90km/h的汽车约有(  )
A.12辆B.80辆C.100辆D.120辆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在区间[a,b]上,若f(x)>0,f′(x)>0,试用几何图形说明下列不等式成立:
f(a)(b-a)<${∫}_{a}^{b}$f(x)dx<f(b)(b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,x1≤x2≤x3,且f(x1)=f(x2)=f(x3),则x1+x2+x3的取值的范围是(  )
A.$[{\frac{3}{2},2})$B.$[{\frac{3}{2},2}]$C.$({-\frac{1}{2},1}]$D.$[{\frac{1}{2},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ln(1-x)-ln(1+x).
(Ⅰ) 指出函数f(x)的定义域并求$f({-\frac{1}{3}}),f({-\frac{1}{2}}),f({\frac{1}{2}}),f({\frac{1}{3}})$的值;
(Ⅱ) 观察(Ⅰ)中的函数值,请你猜想函数f(x)的一个性质,并证明你的猜想;
(Ⅲ) 解不等式:f(1+x)+ln3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案