精英家教网 > 高中数学 > 题目详情
18.若f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,x1≤x2≤x3,且f(x1)=f(x2)=f(x3),则x1+x2+x3的取值的范围是(  )
A.$[{\frac{3}{2},2})$B.$[{\frac{3}{2},2}]$C.$({-\frac{1}{2},1}]$D.$[{\frac{1}{2},2})$

分析 由二次函数的对称性可得x2+x3=2,即有x1+x2+x3=x1+2,再由图象解得-$\frac{1}{2}$≤x1<0,进而得到所求范围.

解答 解:由于f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,
当x<0时,y>-2;
当x≥0时,y=(x-1)2-2≥-2,
f(0)=f(2)=-1,
由x1<x2<x3,且f (x1)=f (x2)=f (x3),
则x2+x3=2,即有x1+x2+x3=x1+2,
当f(x1)=-1即-2x1-2=-1,解得x1=-$\frac{1}{2}$,
由-$\frac{1}{2}$≤x1<0,
可得$\frac{3}{2}$≤x1+2<2,
故选:A.

点评 本题考查分段函数的图象和应用,考查二次函数的对称性,考查数形结合的思想方法,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=x3-ax在x=2处取得极小值,则a=(  )
A.6B.12C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①如果两个命题互为逆否命题,那么它们的真假性相同;
②命题“若a,b都是偶数,则a+b是偶数”的否命题为真命题;
③已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支;
④对于空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1是四点P,A,B,C共面的充要条件.
其中所有正确的命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则f(1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知坐标平面上两个定点A(0,3),O(0,0),动点M(x,y)满足:|MA|=2|OM|.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点N(-1,3)的直线l被C所截得的线段的长为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.测量地震级别的里氏级是地震强度(即地震释放的能量)的常用对数值的表达式,显然地震的级别越高,地震的强度也越高.已知里氏震级R与地震释放的能量E的关系为R=$\frac{2}{3}$(lgE-11.4),2008年5月12日,我国四川汶川发生特大地震,据国家地震台网测定,速报的震级为里氏7.8级.随后,据国际惯例,地震专家利用包括全球地震台网在内的更多台站资料,对这次地震的参数进行了详细测定,据此对震级进行修订,修订后震级为里氏8.0级,那么里氏8.0级的地震释放的能量大约是里氏7.8级的地震释放的能缝的多少倍?(参考数据100.2≈1.6,100.3≈2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.五名学生在某一次考试中的数学成绩(x分)与物理成绩(y分)具有线性相关关系,且线性回归方程为$\widehat{y}=0.75x+10$,数学平均分$\widehat{x}=100$分,计算后发现,物理一个分值为2分的题的答案出错,更改前这五名同学此题都没有得分,更改后这五名同学都得2分,假设更改后数学成绩(x分)与物理成绩(y分)还具有线性相关性,则更改后的x与y的线性回归方程为y=0.75x+12
(附:线性回归方程为$\widehat{y}=\widehat{b}x+\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-b\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据上海高考改革方案,2017年,高中生可从思想政治、历史、地理、物理、化学、生命科学6门学业考试科目中选3门参加等级性考试,并且这3门学业考试科目等级考试成绩将这算,计入高考总分,上海37所本科高校,从目前公布的1096个专业(类)的选考科目老看,学生选考物理可以满足1070个专业选科要求,覆盖率97.63%;选考化学可以满足992个专业选科要求,覆盖率为90.51%;选考生命科学可以满足877个专业选科要求,覆盖率为80.02%,地理、历史、思想政治的覆盖率分别为64.05%、63.5%、62.14%,为了进一步调查学生选考的意向,某机构对本市两所学校各100名高一新生进行了选考调查,且规定从6门学业考试中每一位学生只能选择1门,结果如下:
  物理化学 生命科学  政治 历史 地理
 甲校 35 20 15 7 8 15
 乙校 30 14 16 11 14 15
(1)分别计算甲乙两校选考理科专业的频率,若将该频率视为概率,求从乙校高一新生中随机选取3人,其中恰有2人选考理科专业的概率;
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案