精英家教网 > 高中数学 > 题目详情
11.在区间[a,b]上,若f(x)>0,f′(x)>0,试用几何图形说明下列不等式成立:
f(a)(b-a)<${∫}_{a}^{b}$f(x)dx<f(b)(b-a).

分析 根据函数的单调性,画出函数f(x)在区间[a,b]的大致图象,根据面积的关系判断不等式的大小即可.

解答 解:如图示:

(b-a)是长,f(a)是高,它们的乘积是个小矩形,
根据这个几何意义,
不等式两头的表示的都是矩形面积,
中间的是曲边梯形面积,
最右边的高于最左边的,

点评 本题考察了导数的意义,定积分的意义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知直线l1和l2在y轴上的截距相等,且它们的斜率互为相反数.若直线l1过点P(1,3),且点Q(2,2)到直线l2的距离为$\sqrt{5}$,求直线l1和直线l2的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍是A,那么称x=g(x)是函数y=f(x)的一个等值域变换.
(1)已知函数f(x)=x2-x+1,x∈B,x=g(t)=log2t,t∈C.
1°若B,C分别为下列集合时,判断x=g(t)是不是函数y=f(x)的一个等值域变换:①B=R,C=(1,+∞);②B=R,C=(2,+∞)
2°若B=[0,4],C=[a,b](0<a<b),若x=g(t)是函数y=f(x)的一个等值域变换,求a,b满足的条件;
(2)设f(x)=log2x的定义域为x∈[2,8],已知x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a}{2}$x2-(a+1)lnx+x+1.
(1)当a<0时,讨论f(x)的单调性;
(2)若g(x)=$\frac{a+1}{2}$x2-a1nx-ax+1-f(x),设x1,x2(x1<x2)是函数g(x)的两个极值点,若a≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①如果两个命题互为逆否命题,那么它们的真假性相同;
②命题“若a,b都是偶数,则a+b是偶数”的否命题为真命题;
③已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支;
④对于空间任意一点O和不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=1是四点P,A,B,C共面的充要条件.
其中所有正确的命题的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=|x+1|+|ax-1|是偶函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知坐标平面上两个定点A(0,3),O(0,0),动点M(x,y)满足:|MA|=2|OM|.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点N(-1,3)的直线l被C所截得的线段的长为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=-x3+6x2-9x+8,则过点(0,0)可作曲线y=f(x)的切线的条数为(  )
A.3B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若不等式$\frac{{x}^{2}-8x+20}{m{x}^{2}+2(m+1)x+9m+4}$>0对任意实数x恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案