精英家教网 > 高中数学 > 题目详情
2.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍是A,那么称x=g(x)是函数y=f(x)的一个等值域变换.
(1)已知函数f(x)=x2-x+1,x∈B,x=g(t)=log2t,t∈C.
1°若B,C分别为下列集合时,判断x=g(t)是不是函数y=f(x)的一个等值域变换:①B=R,C=(1,+∞);②B=R,C=(2,+∞)
2°若B=[0,4],C=[a,b](0<a<b),若x=g(t)是函数y=f(x)的一个等值域变换,求a,b满足的条件;
(2)设f(x)=log2x的定义域为x∈[2,8],已知x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m,n的值.

分析 (1)根据等值域变换的定义,分别进行推导判断即可.
(2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n.

解答 解:1°f(x)=x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,即函数f(x)的值域为[$\frac{3}{4}$,+∞),
①C=(1,+∞)时,g(t)∈(0,+∞),f(g(t))=(g(t))2-g(t)+1=(g(t)-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,
即函数f(g(t))的值域为[$\frac{3}{4}$,+∞),即x=g(t)是函数y=f(x)的一个等值域变换
②B=R,C=(2,+∞)时,g(t)∈(1,+∞),f(g(t))=(g(t))2-g(t)+1=(g(t)-$\frac{1}{2}$)2+$\frac{3}{4}$>1′,
即函数f(g(t))的值域为(1,+∞),即x=g(t)不是函数y=f(x)的一个等值域变换,
故①是等值域变换,②不等值域变换
2°B=[0,4],C=[a,b](0<a<b),f(x)的值域为[$\frac{3}{4}$,13],x=g(t)的值域是[log2a,log2b]
当f(x)=13时,x=-3或4,结合图象可知,若x=g(t)是函数y=f(x)的一个等值域变换,
则$\left\{\begin{array}{l}{lo{g}_{2}a=-3}\\{\frac{1}{2}≤lo{g}_{2}b≤4}\end{array}\right.$或$\left\{\begin{array}{l}{lo{g}_{2}b=4}\\{-3<lo{g}_{2}a≤\frac{1}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{8}}\\{\sqrt{2}≤b≤16}\end{array}\right.$或$\left\{\begin{array}{l}{b=16}\\{\frac{1}{8}<a≤\sqrt{2}}\end{array}\right.$,
故若x=g(t)是函数y=f(x)的一个等值域变换,则a,b满足的条件是:
$\left\{\begin{array}{l}{a=\frac{1}{8}}\\{\sqrt{2}≤b≤16}\end{array}\right.$或$\left\{\begin{array}{l}{b=16}\\{\frac{1}{8}<a≤\sqrt{2}}\end{array}\right.$.
(2)f(x)=log2x定义域为[2,8],由y=log2x,知1≤y≤3,
即f(x)=log2x的值域为[1,3],
因为x=g(t)是y=f(x)的一个等值域变换,且函数f(g(t))的定义域为R,
所以x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$,t∈R的值域为[2,8],
则2≤$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$≤8,
∴2(t2+1)≤mt2-3t+n≤8(t2+1),
所以,恒有$\left\{\begin{array}{l}{(m-2){t}^{2}-3t+n-2≥0}\\{(m-8){t}^{2}-3t+n-8≤0}\end{array}\right.$,
且存在t1,t2∈R使两个等号分别成立,
于是$\left\{\begin{array}{l}{2<m<8}\\{{△}_{1}=9-4(m-2)(n-2)=0}\\{{△}_{2}=9-4(m-8)(n-8)=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=5+\frac{3\sqrt{3}}{2}}\\{n=5-\frac{3\sqrt{3}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{m=5-\frac{3\sqrt{3}}{2}}\\{n=5+\frac{3\sqrt{3}}{2}}\end{array}\right.$.

点评 本题主要考查了新定义的理解和运用,主要函数值域的问题,利用已知条件演绎推理的能力和运算能力.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在底面直径为4的圆柱形容器中,放入一个半径为1的冰球,当冰球全部融化后,容器中液面的高度为0.3(相同体积的冰与水的质量比为9:10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
C.由五个面围成的多面体一定是四棱锥
D.棱台各侧棱的延长线交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数g(x)=sinx•log2($\sqrt{{x}^{2}+2t}$+x)为偶函数,则t=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知g(x)=x2-2x-3,f(x)=ax+2.(a>0).
(1)若对于x∈[3,6]时,总存在x0,使得f(x0)=g(x0),求a的取值范围;
(2)若g(x-b)=0在(-1,6)上恒有一个实数根.求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以下茎叶图记录了在高三一诊模拟考试中,A,B两个学校的各4个班的优生人数,其中有两个数据模糊不清,在图中用x,y表示,统计显示,A,B两个学校的优生人数的平均值相等,A校优生人数的方差比B校优生人数的方差小1.
(Ⅰ)求实数x,y的值;
(Ⅱ)从A,B两校中各随机抽取一个班级,记这两个班的优生人数分别为m,n,求随机变量ξ=|m-n|的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,{\;}^{\;}x≤0\\{x^{\frac{1}{2}}},{\;}^{\;}{\;}^{\;}x>0\end{array}$如果f(x0)>1,则x0的取值范围是(  )
A.(-1,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在区间[a,b]上,若f(x)>0,f′(x)>0,试用几何图形说明下列不等式成立:
f(a)(b-a)<${∫}_{a}^{b}$f(x)dx<f(b)(b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(λ+1,0,2),$\overrightarrow{b}$=(6,2μ-1,$\frac{2}{λ}$),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ+μ=(  )
A.-$\frac{7}{10}$B.$\frac{7}{10}$C.-7D.7

查看答案和解析>>

同步练习册答案