精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=4,若焦点在x轴上的椭圆
x2
a2
+
y2
b2
=1
 过点p(0,1),且其长轴长等于圆O的直径.
(1)求椭圆的方程;
(2)过点P作两条互相垂直的直线l1与l2,l1与圆O交于A、B两点,l2交椭圆于另一点C.
(Ⅰ)设直线l1的斜率为k,求弦AB长;
(Ⅱ)求△ABC面积的最大值.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:(1)由题意可得b=1,2a=4,即可得到椭圆的方程;
(2)(Ⅰ)由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx-1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|;
(Ⅱ)设A(x1,y1),B(x2,y2),D(x0,y0).根据l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点C的横坐标,即可得出|PC|,即可得到三角形ABC的面积,利用基本不等式的性质即可得出其最大值.
解答: 解:(1)由题意,a=2,b=1,∴椭圆的方程为
x2
4
+y2
=1;
(2)(Ⅰ)由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx-1.
又圆O:x2+y2=4的圆心O(0,0)到直线l1的距离d=
1
k2+1

∴|AB|=2
4-d2
=2
4k2+3
k2+1

(Ⅱ)设A(x1,y1),B(x2,y2),C(x0,y0).
∵l2⊥l1,∴直线l2的方程为x+ky+k=0,与椭圆方程联立联立,
消去y得到(4+k2)x2+8kx=0,解得x0=-
8k
4+k2

∴|PC|=
8
k2+1
4+k2

∴三角形ABC的面积S=
1
2
|AB|•|PD|=
8
4k2+3
4+k2
=
32
4k2+3
+
13
4k2+3
32
2
13
=
16
13
13

当且仅当k=±
10
2
时取等号,
故所求直线l1的方程为y=±
10
2
-1,此时△ABC面积的最大值为
16
13
13
点评:本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(6,4)及圆C:x2+y2-6x+4y+4=0
(1)当直线l过点P且与圆C相切,求直线l的方程;
(2)设过点P的直线与圆C交于A、B两点,当|AB|=3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),F1、F2是其左右焦点,其离心率是
6
3
,P是椭圆上一点,△PF1F2的周长是2(
3
+
2
).
(1)求椭圆的方程;
(2)试对m讨论直线y=2x+m(m∈R)与该椭圆的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(3x-
1
x
x
)n
(n∈N*)的展开式中
(1)若各项系数之和为256,求n的值;
(2)若含有常数项,求最小的n的值,并求此时展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2.
(1)求
3sinα+2cosα
sinα-cosα
的值;
(2)求
cos(π-α)cos(
π
2
+α)sin(α-
2
)
sin(3π+α)sin(α-π)cos(π+α)
的值;
(3)若α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上.若椭圆上的点A(1,
3
2
)
到焦点F1、F2的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标.
(2)过点Q(1,0)的直线与椭圆交于两点M、N,当△OMN的面积取得最大值时,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω>0,函数f(x)=(sinωx+cosωx)2+2cos2ωx-2的最小正周期为π,求函数的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,命题p:关于x的方程x2-ax+a=0有实数根;命题q:方程
x2
9
+
y2
a
=1
所表示的曲线为双曲线,若p∧(¬p)是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(exlnx)′
 
;(
sinx
cosx
)′=
 

查看答案和解析>>

同步练习册答案