精英家教网 > 高中数学 > 题目详情
7.△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面积.

分析 (1)利用正弦定理结合两角和差的正弦公式进行化简即可求角B的大小;
(2)利用余弦定理求出ac的值,代入三角形的面积公式即可.

解答 解:(1)∵bcosC+c cosB=2acosB.
∴由正弦定理得sinBcosC+sinCcosB=2sinAcosBsinA=2sinAcosB,
∵sinA>0,
∴$cosB=\frac{1}{2}$,
∵0<B<π,∴$B=\frac{π}{3}$;
(2)∵$b=\sqrt{13},a+c=4$,
∴b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac
即13=16-3ac,
解得ac=1,
∴$S=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{4}$.

点评 本题主要考查解三角形的应用,根据正弦定理和余弦定理以及两角和差的正弦公式进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.用红,黄,蓝,绿,黑这5种颜色给如图所示的四连圆涂色,要求相邻两个圆所图颜色不能相同,红色至少要涂两个圆,则不同的涂色方案种数为(  )
A.28B.32C.44D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置,共72种排法.
(2)全体排成一行,其中男生必须排在一起,共36种排法.
(3)全体排成一行,男生不能排在一起,共12种排法.
(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变,共20种排法.
(5)全体排成一行,其中甲不在最左边,乙不在最右边,共78种排法.
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法.
(7)排成前后两排,前排3人,后排2人,共120种排法.
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列2014,2015,1,-2014,-2015,…,这个数列满足从第二项起,每一项都等于它的前后两项之和,则这个数列的前2015项之和为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x3+x-3的实数解落在的区间是(  )
A.[0,1]B.[1,2]C.[2,3]D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=$\frac{{i}^{2015}}{1-i}$(其中i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一个几何体的三视图如所示,则这个几何体的表面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计
    
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
P(K2≥k)0.050.01
k3.8416.635
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感a=10b=
不反感c=d=8
合计30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{8}{15}$.
(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
参考数据和公式:
2×2列联表K2公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,K2的临界值表:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案