精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{2,x<0}\end{array}\right.$,若不等式xf(x-1)≥a的解集为[3,+∞),则a的值为(  )
A.-3B.3C.-1D.1

分析 利用分段函数化简不等式,转化求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{2,x<0}\end{array}\right.$,若不等式xf(x-1)≥a的解集为[3,+∞),
当x≥0时,不等式化为:x(x-2)≥a,即x2-2x-a≥0,因为不等式xf(x-1)≥a的解集为[3,+∞),
所以3是方程x2-2x-a=0的根,可得9-6-a=0,解得a=3.
故选:B.

点评 本题考查分段函数的应用,函数与不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.等差数列{an}的前3项和为20,最后3项和为130,所有项的和为200,则项数n为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.长方体的三个相邻面的面积分别为1,2,2,这个长方体的顶点都在同一个球面上,则这个球的体积为$\sqrt{6}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,顶点A(2,1),B(-3,4),C(-1,-1),则△ABC重心G的坐标为(-$\frac{2}{3}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某中学高一、高二年级各有6个班.学校调査了一个学期各班的文学名著阅读量(单位:本).并根据调査结果,得到如下所示的茎叶图:为鼓励学生阅读.在高一、高二两个年级中.学校将阅读量高于本年级阅读量平均数的班级命名为该年级的“书香班级”
(I )当a=4时,记高一年级的“书香班级”数为“m,高二年级的”书香班级”数为n,比较m,n的大小;
(II )在高一年级的6个班级中.任意选取两个.求这两个班级均是“书香班级“的槪率;
(III)若高二年级的“书香班级”数多于高一年级的“书香班级”数.求a的值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y=\frac{cosx}{x}$的导数为$\frac{-xsinx-cosx}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sin(ωx+θ),其中ω>0,θ∈(0,$\frac{π}{2}$),f(x1)=f(x2)=0,|x2-x1|min=$\frac{π}{2}$.f(x)=f($\frac{π}{3}-x$),将f(x)的图象向左平移$\frac{π}{6}$个单位得G(x),则G(x)的单调递减区间是(  )
A.[kπ,kπ+$\frac{π}{2}$]B.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]C.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$]D.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$cos2ωx(ω>0)的最小正周期为2π
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,sinB,sinA,sinC成等比数列,求此时f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=3sin(2x-$\frac{π}{3}$)的图象,经过下列哪个平移变换,可以得到函数y=3sin2x的图象(  )
A.向左平移$\frac{π}{6}$B.向右平移 $\frac{π}{6}$C.向左平移 $\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

同步练习册答案