精英家教网 > 高中数学 > 题目详情
15.已知a>b>c>d>0,ad=bc.
(Ⅰ)证明:a+d>b+c;
(Ⅱ)比较aabbcddc与abbaccdd的大小.

分析 (Ⅰ)先得到(a-d)2>(b-c)2,根据不等式的性质证明即可;(Ⅱ)根据不等式的性质结合指数的性质证明即可.

解答 解:(Ⅰ)由a>b>c>d>0得a-d>b-c>0,即(a-d)2>(b-c)2
由ad=bc得(a-d)2+4ad>(b-c)2+4bc,即(a+d)2>(b+c)2
故a+d>b+c.…(5分)
(Ⅱ)$\frac{aabbcddc}{abbaccdd}$=($\frac{a}{b}$$\frac{π}{3}$)a-b($\frac{c}{d}$$\frac{π}{3}$)d-c=($\frac{a}{b}$$\frac{π}{3}$)a-b($\frac{d}{c}$$\frac{π}{3}$)c-d
由(Ⅰ)得a-b>c-d,又$\frac{a}{b}$>1,所以($\frac{a}{b}$$\frac{π}{3}$)a-b>($\frac{a}{b}$$\frac{π}{3}$)c-d
即($\frac{a}{b}$$\frac{π}{3}$)a-b($\frac{d}{c}$$\frac{π}{3}$)c-d>($\frac{a}{b}$$\frac{π}{3}$)c-d($\frac{d}{c}$$\frac{π}{3}$)c-d=($\frac{ad}{bc}$$\frac{π}{3}$)c-d=1,
故aabbcddc>abbaccdd.…(10分)

点评 本题考查了不等式的基本性质,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=$\sqrt{6}$,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,总有an,Sn,a${\;}_{n}^{2}$成等差数列.
(1)求a1
(2)求数列{an}的通项公式;
(3)求{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1、F2为双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左、右焦点,M为双曲线上一点,且$\overline{M{F}_{1}}$•$\overline{M{F}_{2}}$=0,则点M到x轴的距离为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,an>0,其前n项和Sn满足Sn2-(n2+2n-1)Sn-(n2+2n)=0.
(Ⅰ) 求{an}的通项公式an
(Ⅱ) 若bn=$\frac{{a}_{n}-5}{{2}^{n}}$,求b2+b4+…+b2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).
(1)若经过x年该城市人口总数为y万,试写出y关于x的函数关系式;
(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC,满足bcosC+$\sqrt{3}$bsinC-a-c=0
(Ⅰ)求角B的值;
(Ⅱ)若a=2,且AC边上的中线BD长为$\sqrt{21}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a12+b12≠0,a22+b22≠0,则“$|{\begin{array}{l}{a_1}&{b_1}\\{{a_2}}&{b_2}\end{array}}$|=0”是“直线l1:a1x+b1y+c1=0与l2:a2x+b2y+c2=0”平行的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案