精英家教网 > 高中数学 > 题目详情
19.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=$\sqrt{6}$,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.

分析 (1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;
(2)根据余弦定理求出BD=$\sqrt{3}$,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;
(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.

解答 证明:(1)BD的中点为O,连接OE,OG,在△BCD中,
∵G是BC的中点,
∴OG∥DC,且OG=$\frac{1}{2}$DC=1,
又∵EF∥AB,AB∥DC,
∴EF∥OG,且EF=OG,
即四边形OGEF是平行四边形,
∴FG∥OE,
∵FG?平面BED,OE?平面BED,
∴FG∥平面BED;
(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,
由余弦定理可得BD=$\sqrt{3}$,仅而∠ADB=90°,
即BD⊥AD,
又∵平面AED⊥平面ABCD,
BD?平面ABCD,平面AED∩平面ABCD=AD,
∴BD⊥平面AED,
∵BD?平面BED,
∴平面BED⊥平面AED.
(Ⅲ)∵EF∥AB,
∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,
过点A作AH⊥DE于点H,连接BH,
又平面BED∩平面AED=ED,
由(2)知AH⊥平面BED,
∴直线AB与平面BED所成的角为∠ABH,
在△ADE,AD=1,DE=3,AE=$\sqrt{6}$,由余弦定理得cos∠ADE=$\frac{2}{3}$,
∴sin∠ADE=$\frac{\sqrt{5}}{3}$,
∴AH=AD•$\frac{\sqrt{5}}{3}$,
在Rt△AHB中,sin∠ABH=$\frac{AH}{AB}$=$\frac{\sqrt{5}}{6}$,
∴直线EF与平面BED所成角的正弦值$\frac{\sqrt{5}}{6}$

点评 本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一个口袋内有大小相同的4个白球,3个黑球,从中任意摸出三个球,其中只有一个白球的概率是$\frac{12}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)=(m-1)x2+2mx+3是偶函数,则f(0)=3,它的递增区间是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=(  )
A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.有两排座位,第一排有3个座位,第二排有5个座位,现有8名学生入座,每人一个座位,求不同的坐法总数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=$\sqrt{2}$,b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m-x=$\sqrt{5}$+2,求$\frac{{m}^{2x}-1{+m}^{-2x}}{{m}^{-3x}{+m}^{3x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>b>c>d>0,ad=bc.
(Ⅰ)证明:a+d>b+c;
(Ⅱ)比较aabbcddc与abbaccdd的大小.

查看答案和解析>>

同步练习册答案