分析 (1)an,Sn,${{a}_{n}}^{2}$成等差数列⇒2Sn=an+${{a}_{n}}^{2}$,令n=1,a1>0,即可求得a1;
(2)由2Sn=an+${{a}_{n}}^{2}$①,当n≥2时,2Sn-1=an-1+${{a}_{n-1}}^{2}$②,①-②,利用等差数列的定义可得数列{an}为公差为1、a1=1的等差数列,从而可求数列{an}的通项公式;
(3)利用裂项法可得$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,于是可求{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Tn.
解答 解:(1)∵对于任意的n∈N*,总有an,Sn,${{a}_{n}}^{2}$成等差数列,
∴2Sn=an+${{a}_{n}}^{2}$,
当n=1时,2a1=a1+${{a}_{1}}^{2}$,又a1>0,
∴a1=1;
(2)由2Sn=an+${{a}_{n}}^{2}$,①
当n≥2时,2Sn-1=an-1+${{a}_{n-1}}^{2}$,②
①-②得:2an=an-an-1+${{a}_{n}}^{2}$-${{a}_{n-1}}^{2}$,即an+an-1=(an+an-1)(an-an-1),
∵数列{an}的各项均为正数,
∴an-an-1=1,即数列{an}为公差为1的等差数列,
又a1=1,
∴an=1+(n-1)×1=n;
(3)∵$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查等差数列的判定及其通项公式的求法,考查裂项法求和,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.5 | B. | -0.5 | C. | 3.5 | D. | -3.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com