精英家教网 > 高中数学 > 题目详情
4.已知$\frac{π}{4}$<θ<$\frac{π}{2}$,sinθ+cosθ=$\frac{5}{4}$,则sinθ-cosθ=(  )
A.$\frac{\sqrt{7}}{4}$B.-$\frac{\sqrt{7}}{4}$C.$\frac{\sqrt{5}}{2}$D.-$\frac{\sqrt{5}}{2}$

分析 由条件利用同角三角函数的基本关系可得sinθ和cosθ的值,从而求得sinθ-cosθ的值.

解答 解:∵$\frac{π}{4}$<θ<$\frac{π}{2}$,sinθ+cosθ=$\frac{5}{4}$,sin2θ+cos2θ=1,sinθ>cosθ,
∴sinθ=$\frac{5+\sqrt{7}}{8}$,cosθ=$\frac{5-\sqrt{7}}{8}$,
则sinθ-cosθ=$\frac{\sqrt{7}}{4}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知直线l1:$\frac{x}{m-2}$-$\frac{4m}{m-2}$y+2=0,l2:m2x+$\frac{y}{m}$-9=0.若l1⊥l2,则m的值是(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数x,y满足约束条件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,则z=2x-y的最大值为(  )
A.4B.5C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,两直角边和斜边分别为a,b,c,若a+b=cx,试确定实数x的取值范围(  )
A.$({1,\sqrt{2}}]$B.$({0,\sqrt{2}}]$C.$[{\sqrt{2},2})$D.$[{\sqrt{2},\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面直角坐标系中,三点A(1,-1),B(5,2),C(4,m),满足AB⊥BC,
(1)求实数m的值;
(2)求过点C且与AB平行的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(θ)=12cosθ+5sinθ(θ∈[0,2π))在θ=θ0处取得最小值,则点M(cosθ0,sinθ0)关于坐标原点对称的点坐标是($\frac{12}{13}$,$\frac{5}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=5|x|的值域是(  )
A.(-∞,1]B.[1,+∞)C.(0,1]D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.给出下列函数,y=3cos(2x-$\frac{π}{3}$).求:
(1)最小正周期;
(2)最值及取到最值时对应的自变量x的集合;
(3)单调递减区间;
(4)对称轴,对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角α与β关于y=x轴对称,则α与β的关系为$α+β=2kπ+\frac{π}{2},k∈Z$..

查看答案和解析>>

同步练习册答案