精英家教网 > 高中数学 > 题目详情
14.已知直线l1:$\frac{x}{m-2}$-$\frac{4m}{m-2}$y+2=0,l2:m2x+$\frac{y}{m}$-9=0.若l1⊥l2,则m的值是(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

分析 利用直线垂直的性质求解.

解答 解:∵直线l1:$\frac{x}{m-2}$-$\frac{4m}{m-2}$y+2=0,l2:m2x+$\frac{y}{m}$-9=0,l1⊥l2
∴$\frac{{m}^{2}}{m-2}+(-\frac{4m}{m-2})•\frac{1}{m}$=0,且m-2≠0.
解得m=-2.
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)是奇函数,且当x≥0时,f(x)=1n($\sqrt{1+{x}^{2}}$-x).
(1)证明函数f(x)在[0,+∞)上为减函数;
(2)若f(t)+f(1-2t)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{f(x-3),x>0}\end{array}\right.$,则f(1)=-3,f(2015)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知a2,b2,c2成等差数列,则cosB的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知ax-y+2a+1=0,当a∈[-1,$\frac{1}{3}$]时,恒有y>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.两圆${C_1}:{x^2}+{y^2}-1=0$和${C_2}:{x^2}+{y^2}-4x-5=0$的位置关系是(  )
A.相交B.外离C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为2826cm2(用数字作答,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数y=$\sqrt{3}$cos2x-sin2x的图象向右平移$\frac{π}{3}$个单位长度,所得图象对应的函数为g(x),则g(x)=(  )
A.-2sin2xB.2sin2xC.2cos(2x-$\frac{π}{6}$)D.2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{π}{4}$<θ<$\frac{π}{2}$,sinθ+cosθ=$\frac{5}{4}$,则sinθ-cosθ=(  )
A.$\frac{\sqrt{7}}{4}$B.-$\frac{\sqrt{7}}{4}$C.$\frac{\sqrt{5}}{2}$D.-$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步练习册答案