分析 由条件利用余弦函数的周期性、单调性、最值,以及图象的对称性,得出结论.
解答 解:(1)对于函数,y=3cos(2x-$\frac{π}{3}$),它的周期为$\frac{2π}{2}$=π.
(2)当2x-$\frac{π}{3}$=2kπ,函数y取得最大值为3,此时,x取值的集合为{x|x=kπ+$\frac{π}{6}$,k∈Z};
当2x-$\frac{π}{3}$=2kπ-π,函数y取得最小值为-3,此时,x取值的集合为{x|x=kπ-$\frac{π}{3}$,k∈Z}.
(3)令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,k∈Z,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
可得函数的减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(4)令2x-$\frac{π}{3}$=kπ,求得x=$\frac{k}{2}$π+$\frac{π}{6}$,可得函数的图象的对称轴为x=$\frac{k}{2}$π+$\frac{π}{6}$,k∈Z.
令2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{1}{2}$kπ+$\frac{5π}{12}$,可得函数的图象的对称中心为($\frac{1}{2}$kπ+$\frac{5π}{12}$,0),k∈Z.
点评 本题主要考查余弦函数的周期性、单调性、最值,以及图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -2sin2x | B. | 2sin2x | C. | 2cos(2x-$\frac{π}{6}$) | D. | 2sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{4}$ | B. | -$\frac{\sqrt{7}}{4}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | -$\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{5}{12}$ ) | B. | ($\frac{5}{12}$,+∞) | C. | ($\frac{1}{3}$,$\frac{3}{4}$] | D. | ($\frac{5}{12}$,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 2x+$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | -$\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com