精英家教网 > 高中数学 > 题目详情
18.若关于m、n的二元方程组$\left\{\begin{array}{l}{\sqrt{4-{m}^{2}}+1-n=0}\\{km-n-2k+4=0}\end{array}\right.$有两组不同的实数解,则实数k的取值范围是(  )
A.(0,$\frac{5}{12}$ )B.($\frac{5}{12}$,+∞)C.($\frac{1}{3}$,$\frac{3}{4}$]D.($\frac{5}{12}$,$\frac{3}{4}$]

分析 由题意作函数n=1+$\sqrt{4-{m}^{2}}$与直线n=k(m-2)+4的图象,从而化为图象的交点的个数问题,从而解得.

解答 解:由题意作函数n=1+$\sqrt{4-{m}^{2}}$与直线n=k(m-2)+4的图象如下,

直线n=k(m-2)+4过定点A(2,4),
当直线n=k(m-2)+4过点C时,
$\frac{|-1-2k+4|}{\sqrt{1+{k}^{2}}}$=2,
解得,k=$\frac{5}{12}$,
当直线n=k(m-2)+4过点B时,
k=$\frac{4-1}{2+2}$=$\frac{3}{4}$,
结合图象可知,
$\frac{5}{12}$<k≤$\frac{3}{4}$,
故选:D.

点评 本题考查了数形结合的思想应用及学生的作图能力,注意n=1+$\sqrt{4-{m}^{2}}$的图象是半圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知点(n,$\frac{{a}_{n}}{n}$)在二次函数f(x)=x2-10x+32的图象上,若存在正整数k,当任意n>k(k∈N*)时,恒有an>ak,则k的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(θ)=12cosθ+5sinθ(θ∈[0,2π))在θ=θ0处取得最小值,则点M(cosθ0,sinθ0)关于坐标原点对称的点坐标是($\frac{12}{13}$,$\frac{5}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“?x∈R,x2-2x+1<0”的否定形式为?x0∈R,x${\;}_{0}^{2}$-2x0+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.给出下列函数,y=3cos(2x-$\frac{π}{3}$).求:
(1)最小正周期;
(2)最值及取到最值时对应的自变量x的集合;
(3)单调递减区间;
(4)对称轴,对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=log${\;}_{\frac{1}{2}}$(2sin$\frac{x}{2}$).
(1)求这个函数的单调递减区间;
(2)求使f(x)<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a,b,p(a≠0,b≠0,p>0)分别表示同一直线的横截距、纵截距及原点到直线的距离,则下列关系式成立的是(  )
A.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{p}^{2}}$B.$\frac{1}{{a}^{2}}$-$\frac{1}{{b}^{2}}$=$\frac{1}{{p}^{2}}$C.$\frac{1}{{a}^{2}}$+$\frac{1}{{p}^{2}}$=$\frac{1}{{b}^{2}}$D.$\frac{1}{{a}^{2}{p}^{2}}$=$\frac{1}{{b}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2x-2msinx+m2-1(m∈R)
(1)当m=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(2)已知g(x)=cos2x-2$\sqrt{3}$mcosx,若f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,且cos(α-β)=$\frac{1}{4}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,求f(3)的值.

查看答案和解析>>

同步练习册答案