精英家教网 > 高中数学 > 题目详情
3.设f(x)=log${\;}_{\frac{1}{2}}$(2sin$\frac{x}{2}$).
(1)求这个函数的单调递减区间;
(2)求使f(x)<0的x的取值范围.

分析 (1)先求出函数的定义域,利用复合函数的单调性之间的关系进行求解即可.
(2)利用对数函数的图象和性质可得sin$\frac{x}{2}$$>\frac{1}{2}$,再根据正弦函数的图象和性质可得:2kπ+$\frac{π}{6}$<$\frac{x}{2}$<2kπ+$\frac{5π}{6}$,k∈Z,即可解得使f(x)<0的x的取值范围.

解答 解:(1)要使函数有意义,则2sin$\frac{x}{2}$>0,即x∈(4kπ,4kπ+2π),k∈Z.
设t=2sin$\frac{x}{2}$,则当x∈(4kπ,4kπ+π)时,函数t=2sin$\frac{x}{2}$单调递增,
当x∈(4kπ+π,4kπ+2π)时,函数t=2sin$\frac{x}{2}$单调递减.
∵函数y=log${\;}_{\frac{1}{2}}$t,在定义域上为单调递减函数,
∴根据复合函数的单调性之间的关系可知,
当x∈(4kπ,4kπ+π)时,函数f(x)单调递减,
即函数f(x)的递减区间为(4kπ,4kπ+π),k∈Z.
(2)∵f(x)=log${\;}_{\frac{1}{2}}$(2sin$\frac{x}{2}$)<0,
∴2sin$\frac{x}{2}$>1,即:sin$\frac{x}{2}$$>\frac{1}{2}$,
∴解得:2kπ+$\frac{π}{6}$<$\frac{x}{2}$<2kπ+$\frac{5π}{6}$,k∈Z.
∴x∈(4kπ+$\frac{π}{3}$,4kπ+$\frac{5π}{3}$),k∈Z.

点评 本题主要考查了正弦函数的图象和性质,对数函数的图象和性质,考查了复合函数单调性的判断,利用复合函数同增异减的原则进行判断即可,注意要先求出函数的定义域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=45°,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,D为AB的中点,求AB,CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把函数y=sin3x的图象向右平移$\frac{π}{4}$个长度单位,所得曲线的对应函数式(  )
A.y=sin(3x-$\frac{3π}{4}$)B.y=sin(3x+$\frac{π}{4}$)C.y=sin(3x-$\frac{π}{4}$)D.y=sin(3x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设复数z=x+yi(x,y∈R且y≠0),设μ=x+yi+$\frac{x-yi}{{x}^{2}+{y}^{2}}$,且-1<μ<2,求|z|的值及Rez的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于m、n的二元方程组$\left\{\begin{array}{l}{\sqrt{4-{m}^{2}}+1-n=0}\\{km-n-2k+4=0}\end{array}\right.$有两组不同的实数解,则实数k的取值范围是(  )
A.(0,$\frac{5}{12}$ )B.($\frac{5}{12}$,+∞)C.($\frac{1}{3}$,$\frac{3}{4}$]D.($\frac{5}{12}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=2sin($\frac{π}{3}-\frac{x}{3}$)的单调递增区间是(  )
A.[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z)B.[$\frac{π}{2}+2kπ$,$\frac{3}{2}$π+2kπ](k∈Z)
C.[$\frac{5π}{2}$+6kπ,$\frac{11π}{2}$+6kπ](k∈Z)D.[-$\frac{π}{2}$+6kπ,$\frac{5}{2}$π+6kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线(2+a)x+(3-a)y+8-2a=0恒过定点(-$\frac{2}{5}$,-$\frac{12}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法不正确的是①.
①$\overrightarrow{AB}$=$\overrightarrow{BA}$
②$\overrightarrow{m}$与$\overrightarrow{n}$共线,则$\overrightarrow{m}$∥$\overrightarrow{n}$
③$\overrightarrow{0}$∥$\overrightarrow{a}$
④|$\overrightarrow{e}$|=1($\overrightarrow{e}$为单位向量)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\sqrt{2}$-3i,则复数的模|z|是(  )
A.5B.8C.6D.$\sqrt{11}$

查看答案和解析>>

同步练习册答案