精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sin2x-2msinx+m2-1(m∈R)
(1)当m=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(2)已知g(x)=cos2x-2$\sqrt{3}$mcosx,若f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,且cos(α-β)=$\frac{1}{4}$,求m的值.

分析 (1)当m=$\frac{1}{2}$时,可求f(x)=(sinx-$\frac{1}{2}$)2-1,可得$\frac{1}{2}≤$sinx≤1,利用正弦函数的图象和性质及复合函数的单调性即可得解函数f(x)的单调递增区间.
(2)由题意可得f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,即sin(x+$\frac{π}{3}$)-$\frac{m}{4}$=0在[$\frac{π}{3}$,$\frac{7π}{3}$)上有两相异实数根α,β,则α+β=$\frac{3π}{2}$,可求$\frac{2π}{3}$<α<$\frac{3π}{2}$,$\frac{4π}{3}$<2α<3π,由cos(α-β)=$\frac{1}{4}$,可得:sin2α=-$\frac{1}{4}$<0,从而解得范围:$\frac{2π}{3}$<α<π,由sin2α=-$\frac{1}{4}$,解得sinα,cosα的值,利用两角和的正弦函数公式即可求得m的值.

解答 解:(1)∵当m=$\frac{1}{2}$时,f(x)=sin2x-sinx-$\frac{3}{4}$=(sinx-$\frac{1}{2}$)2-1,
∴当$\frac{1}{2}≤$sinx≤1时,函数f(x)单调递增,
∴利用正弦函数的图象和性质及复合函数的单调性可得函数f(x)的单调递增区间为:[2k$π+\frac{π}{6}$,2kπ+$\frac{π}{2}$],k∈Z.
(2)∵f(x)+g(x)=0,
∴可得:sin2x-2msinx+m2-1+cos2x-2$\sqrt{3}$mcosx=0,整理可得:m=2sinx+2$\sqrt{3}$cosx=4sin(x+$\frac{π}{3}$),
∵x∈[0,2π),x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{3}$),
∵f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,即sin(x+$\frac{π}{3}$)-$\frac{m}{4}$=0在[$\frac{π}{3}$,$\frac{7π}{3}$)上有两相异实数根α,β,
则α+β=$\frac{3π}{2}$,$\frac{2π}{3}$<α<$\frac{3π}{2}$,$\frac{4π}{3}$<2α<3π.
∵cos(α-β)=cos[α-($\frac{3π}{2}$-α)]=-sin2α=$\frac{1}{4}$,可得:sin2α=-$\frac{1}{4}$<0,
∴$\frac{4π}{3}$<2α<2π,解得:$\frac{2π}{3}$<α<π,sinα>0,cosα<0,
∴由sin2α=-$\frac{1}{4}$,解得:sinα+cosα=$\frac{\sqrt{3}}{2}$,sinα-cosα=$\frac{\sqrt{5}}{2}$,解得:sinα=$\frac{\sqrt{3}+\sqrt{5}}{4}$,cosα=$\frac{\sqrt{3}-\sqrt{5}}{4}$,
∴m=2sinx+2$\sqrt{3}$cosx=2×$\frac{\sqrt{3}+\sqrt{5}}{4}$+2$\sqrt{3}$×$\frac{\sqrt{3}-\sqrt{5}}{4}$=$\frac{\sqrt{3}+\sqrt{5}+3-\sqrt{15}}{2}$.

点评 本题重点考查了三角函数的图象与性质及其运用,三角函数中的恒等变换应用,考查函数与方程的综合运用,考查了数形结合思想和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.方程x2+y2+2ax-4y+(a2+a)=0表示一个圆,则a的取值范围是(  )
A.[4,+∞)B.(4,+∞)C.(-∞,4]D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于m、n的二元方程组$\left\{\begin{array}{l}{\sqrt{4-{m}^{2}}+1-n=0}\\{km-n-2k+4=0}\end{array}\right.$有两组不同的实数解,则实数k的取值范围是(  )
A.(0,$\frac{5}{12}$ )B.($\frac{5}{12}$,+∞)C.($\frac{1}{3}$,$\frac{3}{4}$]D.($\frac{5}{12}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线(2+a)x+(3-a)y+8-2a=0恒过定点(-$\frac{2}{5}$,-$\frac{12}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.C(1,y)分AB的比为$\frac{3}{5}$,A(-2,5)、B(x,-3),则x+y=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法不正确的是①.
①$\overrightarrow{AB}$=$\overrightarrow{BA}$
②$\overrightarrow{m}$与$\overrightarrow{n}$共线,则$\overrightarrow{m}$∥$\overrightarrow{n}$
③$\overrightarrow{0}$∥$\overrightarrow{a}$
④|$\overrightarrow{e}$|=1($\overrightarrow{e}$为单位向量)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.空间四边形ABCD中,对角线AC与BD互相垂直,那么顺次联结四边形各边中点所得的四边形是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a,b,c分别为内角A,B,C所对的边,且sin2A=sinC-sin(A-B),C为钝角.
(1)求证:△ABC为等腰三角形;
(2)若a=1,△ABC的面积为$\frac{\sqrt{3}}{4}$,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若loga2b=-1,则a+b的最小值为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案