分析 (1)当m=$\frac{1}{2}$时,可求f(x)=(sinx-$\frac{1}{2}$)2-1,可得$\frac{1}{2}≤$sinx≤1,利用正弦函数的图象和性质及复合函数的单调性即可得解函数f(x)的单调递增区间.
(2)由题意可得f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,即sin(x+$\frac{π}{3}$)-$\frac{m}{4}$=0在[$\frac{π}{3}$,$\frac{7π}{3}$)上有两相异实数根α,β,则α+β=$\frac{3π}{2}$,可求$\frac{2π}{3}$<α<$\frac{3π}{2}$,$\frac{4π}{3}$<2α<3π,由cos(α-β)=$\frac{1}{4}$,可得:sin2α=-$\frac{1}{4}$<0,从而解得范围:$\frac{2π}{3}$<α<π,由sin2α=-$\frac{1}{4}$,解得sinα,cosα的值,利用两角和的正弦函数公式即可求得m的值.
解答 解:(1)∵当m=$\frac{1}{2}$时,f(x)=sin2x-sinx-$\frac{3}{4}$=(sinx-$\frac{1}{2}$)2-1,
∴当$\frac{1}{2}≤$sinx≤1时,函数f(x)单调递增,
∴利用正弦函数的图象和性质及复合函数的单调性可得函数f(x)的单调递增区间为:[2k$π+\frac{π}{6}$,2kπ+$\frac{π}{2}$],k∈Z.
(2)∵f(x)+g(x)=0,
∴可得:sin2x-2msinx+m2-1+cos2x-2$\sqrt{3}$mcosx=0,整理可得:m=2sinx+2$\sqrt{3}$cosx=4sin(x+$\frac{π}{3}$),
∵x∈[0,2π),x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{3}$),
∵f(x)+g(x)=0在[0,2π)上有两相异实数根α,β,即sin(x+$\frac{π}{3}$)-$\frac{m}{4}$=0在[$\frac{π}{3}$,$\frac{7π}{3}$)上有两相异实数根α,β,
则α+β=$\frac{3π}{2}$,$\frac{2π}{3}$<α<$\frac{3π}{2}$,$\frac{4π}{3}$<2α<3π.
∵cos(α-β)=cos[α-($\frac{3π}{2}$-α)]=-sin2α=$\frac{1}{4}$,可得:sin2α=-$\frac{1}{4}$<0,
∴$\frac{4π}{3}$<2α<2π,解得:$\frac{2π}{3}$<α<π,sinα>0,cosα<0,
∴由sin2α=-$\frac{1}{4}$,解得:sinα+cosα=$\frac{\sqrt{3}}{2}$,sinα-cosα=$\frac{\sqrt{5}}{2}$,解得:sinα=$\frac{\sqrt{3}+\sqrt{5}}{4}$,cosα=$\frac{\sqrt{3}-\sqrt{5}}{4}$,
∴m=2sinx+2$\sqrt{3}$cosx=2×$\frac{\sqrt{3}+\sqrt{5}}{4}$+2$\sqrt{3}$×$\frac{\sqrt{3}-\sqrt{5}}{4}$=$\frac{\sqrt{3}+\sqrt{5}+3-\sqrt{15}}{2}$.
点评 本题重点考查了三角函数的图象与性质及其运用,三角函数中的恒等变换应用,考查函数与方程的综合运用,考查了数形结合思想和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (4,+∞) | C. | (-∞,4] | D. | (-∞,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{5}{12}$ ) | B. | ($\frac{5}{12}$,+∞) | C. | ($\frac{1}{3}$,$\frac{3}{4}$] | D. | ($\frac{5}{12}$,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com