【题目】如图,设椭圆C:
(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.![]()
【答案】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由
,消去y得
(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.
由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,
此时点P的横坐标为﹣
,代入y=kx+m得
点P的纵坐标为﹣k
+m=
,
∴点P的坐标为(﹣
,
),
又点P在第一象限,故m>0,
故m=
,
故点P的坐标为P(
,
).
(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
d=
,
整理得:d=
,
因为a2k2+
≥2ab,所以
≤
=a﹣b,当且仅当k2=
时等号成立.
所以,点P到直线l1的距离的最大值为a﹣b.![]()
【解析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由
,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=
,整理即可证得点P到直线l1的距离的最大值为a﹣b..
科目:高中数学 来源: 题型:
【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+
)+
.
(1)若a>0,且f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)在(0,+∞)上的最小值为1?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,函数
的最小值为![]()
(1)当
时,求
的值;
(2)求
;
(3)已知函数
为定义在R上的增函数,且对任意的
都满足![]()
问:是否存在这样的实数m,使不等式
+
对所有![]()
恒成立,若存在,求出m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出一个问题的算法:
S1 输入x;
S2 若x≤2,则执行S3;否则,执行S4;
S3 输出-2x-1;
S4 输出x2-6x+3.
问题:
(1)这个算法解决的是什么问题?
(2)当输入的x值为多大时,输出的数值最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为
,
为
的中点,
为线段
上的动点,过点
,
,
的平面截该正方体所得的截面为
,则下列命题正确的是__________(写出所有正确命题的编号).
![]()
①当
时,
为四边形;②当
时,
为等腰梯形;
③当
时,
与
的交点
满足
;
④当
时,
为五边形;
⑤当
时,
的面积为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
平面
,
.
![]()
(1)证明:平面
平面
;
(2)在
上是否存在一点
,使平面
将几何体
分成上下两部分的体积比为
?若存在,求出点
的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com