精英家教网 > 高中数学 > 题目详情
抛物线y2=4x上一点M到焦点的距离为3,则点M的横坐标x=________.
2
∵2p=4,∴p=2,准线方程x=-1.由抛物线定义可知,点M到准线的距离为3,则x+1=3,即x=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.

(1)若|AB|=8,求抛物线的方程;
(2)求的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线交抛物线于A,B两点,点O是原点,若;则△AOB的面积为(   )
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽        米.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.

(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线y2=4x的焦点为F,过F的直线与该抛物线相交于A(x1,y1)、B(x2,y2)两点,则+的最小值是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线y=k(x+1)与抛物线C:y2=4x相交于A,B两点,F为抛物线C的焦点,若|FA|=2|FB|,则k=(  )
A.±B.±
C.±D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,抛物线的焦点为F,斜率的直线过焦点F,与抛物线交于A、B两点,若抛物线的准线与x轴交点为N,则(  )

A. 1  B.   C.    D.

查看答案和解析>>

同步练习册答案