精英家教网 > 高中数学 > 题目详情
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.

(1)若|AB|=8,求抛物线的方程;
(2)求的最大值
(1);(2).

试题分析:本题主要考查抛物线的标准方程及性质、点到直线的距离、两点间距离公式、韦达定理等数学知识,考查学生分析问题解决问题的能力和计算能力,考查数形结合思想.第一问,由已知条件得到直线AB的方程与抛物线联立,消参得到关于x的方程,求出两根之和,由抛物线的定义得|AB|的值,从而求出P的值;第二问,直线与抛物线联立消去x,解出y,设出M点坐标,则可得到的取值范围,利用点到直线的距离公式列出距离,由于点在直线上方,所以,再化简距离的表达式,通过配方求最值,从而得到M点坐标,即可得到的面积.
试题解析:(1)由条件知lAB,则,消去y得,则x1+x2=3p,由抛物线定义得|AB|=x1+x2+p=4p.
又因为|AB|=8,即p=2,则抛物线的方程为.(5分)
(2)由(1)知|AB|=4p,且lAB
,消x得:,即
,则
M到AB的距离,因为点M在直线AB的上方,所以
所以
时,.
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标为_________________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y2=4x上一点M到焦点的距离为3,则点M的横坐标x=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,为该抛物线上三点,若,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点的坐标为是抛物线的焦点,点在抛物线上移动时,取得最小值的的坐标为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为(  )
A.y=x-1或y=-x+1
B.y=(x-1)或y=-(x-1)
C.y=(x-1)或y=-(x-1)
D.y=(x-1)或y=-(x-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求由抛物线y2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积.

查看答案和解析>>

同步练习册答案