精英家教网 > 高中数学 > 题目详情
5.已知cosθ=-$\frac{7}{25}$,θ∈(π,2π),则sin$\frac{θ}{2}$+cos$\frac{θ}{2}$=$\frac{1}{5}$.

分析 利用同角三角函数的基本关系,二倍角公式,以及三角函数在各个象限中的符号,求得要求式子的值.

解答 解:∵cosθ=-$\frac{7}{25}$,θ∈(π,2π),∴θ为第三象限角,∴sinθ=-$\sqrt{{1-cos}^{2}θ}$=-$\frac{24}{25}$,
∴$\frac{θ}{2}$∈($\frac{π}{2}$,$\frac{3π}{4}$),∴sin$\frac{θ}{2}$+cos$\frac{θ}{2}$>0.
再根据${(sin\frac{θ}{2}+cos\frac{θ}{2})}^{2}$=1+sinθ=$\frac{1}{25}$,可得sin$\frac{θ}{2}$+cos$\frac{θ}{2}$=$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设常数a使方程$\sqrt{3}$sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=$\frac{8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,与函数y=x3的单调性和奇偶性一致的函数是(  )
A.$y=\sqrt{x}$B.y=tanxC.$y=x+\frac{1}{x}$D.y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为$\frac{4}{5}$.现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:
907  966  191  925  271  932  812  458  569  683
031  257  393  527  556  488  730  113  537  989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为(  )
A.$\frac{4}{5}$B.$\frac{18}{20}$C.$\frac{112}{125}$D.$\frac{17}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m为实数,i为虚数单位,若复数z=$\frac{m+2i}{1+i}$,则“m>-2”是“复数z在复平面上对应的点在第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|2x-a|(x∈R).
(1)当a>-2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[-1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$({x+\frac{1}{x}}){({2x-\frac{1}{x}})^5}$是展开式的常数项为(  )
A.120B.40C.-40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且直线x=1与椭圆相交所得弦长为$\sqrt{3}$.
(1)求椭圆的方程;
(2)若在y轴上的截距为4的直线l与椭圆分别交于A,B两点,O为坐标原点,且直线OA,OB的斜率之和等于2,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{sinx}{x}$.
(Ⅰ)求曲线y=f(x)在点A(π,f(π))处的切线方程;
(Ⅱ)证明:若x∈(0,π),则f'(x)<0;
(Ⅲ)若0<α<$\frac{π}{2}$<β<2π,判定f(α)与f(β)的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案