精英家教网 > 高中数学 > 题目详情

(本小题满分12分)函数f(x)=loga(x2-4ax+3a2), 0<a<1, 当x∈[a+2,a+3]时,恒有|f(x)|≤1,试确定a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数有如下性质:如果常数,那么该函数在上是减函数,在 上是增函数.
(1)如果函数上是减函数,在上是增函数,求的值;
(2)证明:函数(常数)在上是减函数;
(3)设常数,求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,
时,
(1) 求当时,的表达式;
(2) 试讨论:当实数满足什么条件时,函数有4个零点,
且这4个零点从小到大依次构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知偶函数的定义域为,且在上是增函数.
(Ⅰ)试比较的大小;
(Ⅱ)若,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求a的值;(2)判断的单调性(不需要写出理由);
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数为偶函数,集合A=为单元素集合
(I)求的解析式
(II)设函数,若函数上单调,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,则      

查看答案和解析>>

同步练习册答案