精英家教网 > 高中数学 > 题目详情
4.已知曲线C1的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为:ρ=4sin(θ+$\frac{π}{3}$),直线l的极坐标方程为θ=$\frac{π}{6}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若曲线C1和曲线C2与直线l分别交于非坐标原点的A,B两点,求|AB|的值.

分析 (1)利用三种方程的转化方法,求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)利用极径的意义,求|AB|的值.

解答 解:(1)曲线C1的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}$(θ为参数),
普通方程为x2+(y-1)2=1,
曲线C2的极坐标方程为:ρ=4sin(θ+$\frac{π}{3}$),即ρ=2sinθ+2$\sqrt{3}$cosθ,
直角坐标方程为x2+y2=2y+2$\sqrt{3}$x;
(2)曲线C1的极坐标方程为:ρ=2sinθ
将θ=$\frac{π}{6}$代入C1的极坐标方程得ρ1=2,
将θ=$\frac{π}{6}$代入C2的极坐标方程得ρ2=4,
∴|AB|=ρ21=3.--------------------------(10分)

点评 本题考查三种方程的转化方法,考查极径的意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知O为正△ABC内的一点,且满足$\overrightarrow{OA}+λ\overrightarrow{OB}+(1+λ)\overrightarrow{OC}=\overrightarrow 0$,若△OAB的面积与△OBC的面积的比值为3,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合$A=\{x|x<2\},B=\{x|\frac{x}{x-1}<1\},R$为实数集,则集合A∩(∁RB)=(  )
A.RB.(-∞,2)C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=lnx-x2与g(x)=(x-2)2-$\frac{1}{2x-4}$-m的图象上存在关于(1,0)对称的点,则实数m的取值范围是(  )
A.(-∞,1-ln2)B.(-∞,1-ln2]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G为PC的中点,PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F,M分别为BC,EG上一点,且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)过点E作平面PCD的垂线,垂足为H,求四棱锥H-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4sinθ.
(1)求圆C的直角坐标方程和直线l普通方程;
(2)设圆C与直线l交于点A,B,若点P的坐标为(3,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:$\sqrt{2}-1≈0.414,\sqrt{3}-\sqrt{2}$≈0.318;∴$\sqrt{2}-1>\sqrt{3}-\sqrt{2}$;又计算:$\sqrt{5}-2≈0.236,\sqrt{6}-\sqrt{5}≈0.213,\sqrt{7}-\sqrt{6}$≈0.196,∴$\sqrt{5}-2>\sqrt{6}-\sqrt{5}$,$\sqrt{6}-\sqrt{5}>\sqrt{7}-\sqrt{6}$.
(1)分析以上结论,试写出一个一般性的命题.
(2)判断该命题的真假,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数y=x+$\frac{a}{x}$(a>0,x>0),其在$(0,\sqrt{a}]$上单调递减,在$[\sqrt{a},+∞)$上单调递增,因为它的图象类似于著名的体育用品公司耐克的商标,我们给予这个函数一个名称--“耐克函数”,设某“耐克函数”f(x)的解析式为f(x)=$\frac{{{x^2}+x+a}}{x}$(a>0,x>0).
(1)若a=4,求函数f(x)在区间$[\frac{1}{2},3]$上的最大值与最小值;
(2)若该函数在区间[1,2]上是单调函数,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案