精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{x^2+3,x≤1}\\{{x}^{\frac{1}{2}},x>1}\end{array}\right.$,则f[f(-1)]的值为2.

分析 根据分段函数的表达式,代入求解即可.

解答 解:f(-1)=1+3=4,f(4)=4${\;}^{\frac{1}{2}}$=$\sqrt{2}=2$,
故f[f(-1)]=2,
故答案为:2.

点评 本题主要考查函数值的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.对于函数f(x)=$\frac{a}{2}$-$\frac{{2}^{x}}{{2}^{x}+1}$(a∈R).
(1)探讨函数f(x)的单调性;
(2)是否存在实数a,使函数f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若存在实数m,n,使得$\left\{\begin{array}{l}{\frac{1}{{e}^{x}}-\frac{a}{x}≥0}\\{x>0}\end{array}\right.$的解集为[m,n],则a的取值范围为(  )
A.($\frac{1}{{e}^{x}}$,e)B.(0,$\frac{1}{{e}^{x}}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知满足$\left\{{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}}\right.$的(x,y)使x2+(y-1)2≤m恒成立,则m的取值范围是(  )
A.m≥1B.$m≥\sqrt{2}$C.m≥2D.$m≥\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+2,x≥3}\\{{2}^{x},x<3}\end{array}\right.$,若f(a)=4,则a的值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A=$\{x|\frac{3-2x}{x+2}>-1\}$,
(Ⅰ)若B⊆A,B={x|m+1<x<2m-1},求实数m的取值范围;
(Ⅱ)若A⊆B,B={x|m-6<x<2m-1},求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=|2x-2|+1,g(x)=x2+2x-$\frac{1}{2}$.
(1)解不等式f(x)≥3-x;
(2)若对?x∈R,$\frac{1}{2}$f(x)+|x+1|>g(m)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(a>0且a≠0)经过点(2,4).
(1)求a的值;
(2)画出函数g(x)=a|x|图象,并写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[0,1]上单调递增,设a=f(3),b=f(1.2),c=f(2),则a,b,c大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

同步练习册答案