精英家教网 > 高中数学 > 题目详情
5.对于函数f(x)=$\frac{a}{2}$-$\frac{{2}^{x}}{{2}^{x}+1}$(a∈R).
(1)探讨函数f(x)的单调性;
(2)是否存在实数a,使函数f(x)为奇函数.

分析 (1)利用函数的单调性的定义,即可得出结论;
(2)利用f(x)是奇函数,则f(x)+f(-x)=0,即可求出a.

解答 解:(1)设x1<x2
则f(x1)-f(x2)=$\frac{a}{2}$-$\frac{{2}^{{x}_{1}}}{{2}^{{x}_{1}+1}}$-$\frac{a}{2}$+$\frac{{2}^{{x}_{2}}}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$.
∵x1<x2,∴${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,即${2}^{{x}_{1}}$-${2}^{{x}_{2}}$>0.
又${2}^{{x}_{1}}$+1>0,${2}^{{x}_{2}}$+1>0.
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴函数f(x)在定义域上是减函数.--------------------(6分)
(2)假设f(x)是奇函数,则f(x)+f(-x)=0.
即$\frac{a}{2}$-$\frac{{2}^{x}}{{2}^{x}+1}$+$\frac{a}{2}$-$\frac{{2}^{-x}}{{2}^{-x}+1}$=a-1=0,∴a=1.
∴存在实数a=1,使f(x)是奇函数.--------------------(12分)

点评 本题考查函数的单调性、奇偶性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合M={x|ln(1-x)<0},N={x|$\frac{\sqrt{2}}{2}$<2x<4},则(∁UM)∩N=(  )
A.{x|-$\frac{1}{2}$<x≤0}B.{x|-$\frac{1}{2}$<x≤0或1≤x<2}C.{x|-1<x≤0}D.{x|-1<x≤0或1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面α⊥平面β的一个充分条件是(  )
A.存在一条直线l、l⊥α、l⊥βB.存在一个面r、r∥α、r∥β
C.存在一个平面r、r⊥α、r⊥βD.存在一条直线l、l⊥α、l∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的前n项和为Sn,若a1=-2,S6=12,则a6的值为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三个元件T1,T2,T3正常工作的概率分别为$\frac{1}{2},\frac{3}{4},\frac{3}{4}$且是互相独立的,按图种方式接入电路,电路正常工作的概率是(  )
A.$\frac{7}{32}$B.$\frac{9}{32}$C.$\frac{15}{32}$D.$\frac{17}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx$,若将函数f(x)的图象向右平移$\frac{π}{6}$个单位,所得图象对应函数为y=g(x),则(  )
A.y=g(x)的图象关于直线$x=-\frac{π}{3}$对称B.y=g(x)图象关于原点对称
C.y=g(x)的图象关于点$({-\frac{π}{3},0})$对称D.y=g(x)图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正四棱锥P-ABCD的棱长都为2,且五个顶点P、A、B、C、D同在一个球上,则球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥P-ABC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,则球O的表面积为(  )
A.13πB.17πC.52πD.68π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{x^2+3,x≤1}\\{{x}^{\frac{1}{2}},x>1}\end{array}\right.$,则f[f(-1)]的值为2.

查看答案和解析>>

同步练习册答案