| A. | 13π | B. | 17π | C. | 52π | D. | 68π |
分析 取PC的中点O,连结OA、OB.由线面垂直的判定与性质,证出BC⊥PB且PA⊥AC,得到△PAC与△PBC是具有公共斜边的直角三角形,从而得出OA=OB=OC=OP=$\frac{1}{2}$PC,所以P、A、B、C四点在以O为球心的球面上.根据题中的数据,利用勾股定理算出PC长,进而得到球半径R,利用球的表面积公式加以计算,可得答案.
解答
解:取PC的中点O,连结OA、OB
∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,
又∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵PB?平面PAB,∴BC⊥PB,
∵OB是Rt△PBC的斜边上的中线,OB=$\frac{1}{2}$PC.
同理可得:Rt△PAC中,OA=$\frac{1}{2}$PC,
∴OA=OB=OC=OP=$\frac{1}{2}$PC,可得P、A、B、C四点在以O为球心的球面上.
Rt△ABC中,AB=BC=2,可得AC=2$\sqrt{2}$,
Rt△PAC中,PA=3,可得PC=$\sqrt{17}$.
∴球O的半径R=$\frac{\sqrt{17}}{2}$,可得球O的表面积为S=4πR2=17π.
故选:B.
点评 本题给出特殊的三棱锥,由它的外接球的表面积.着重考查了线面垂直的判定与性质、勾股定理与球的表面积公式等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
| 喜爱运动 | 不喜爱运动 | 总计 | |
| 男 | 10 | 16 | |
| 女 | 6 | 14 | |
| 总计 | 30 |
| P( k2≥k0) | 0.40 | 0.25 | 0.10 | 0.05 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0 | B. | 若λ$\overrightarrow{a}$=0,则λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$ | ||
| C. | 若$\overrightarrow{a}$2=$\overrightarrow{b}$2,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{{e}^{x}}$,e) | B. | (0,$\frac{1}{{e}^{x}}$) | C. | (0,$\frac{1}{2e}$) | D. | (0,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥1 | B. | $m≥\sqrt{2}$ | C. | m≥2 | D. | $m≥\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com