精英家教网 > 高中数学 > 题目详情
17.若正四棱锥P-ABCD的棱长都为2,且五个顶点P、A、B、C、D同在一个球上,则球的表面积为8π.

分析 画出图形,正四棱锥P-ABCD的底面是正方形,推出底面中心到顶点的距离为球的半径,求出球的表面积.

解答 解:正四棱锥P-ABCD的底面是正方形,对角线的长为2$\sqrt{2}$,如图,
因为P-ABCD是所有棱长均为2的正四棱锥,所以△PAC与△DPB都是等腰直角三角形,中心到P,到A,B,C,D的距离相等,是外接球的半径R,R2+($\sqrt{2}$)2=22,解得R=$\sqrt{2}$,
∴球的表面积S=4π($\sqrt{2}$)2=8π.
故答案为:8π.

点评 本题给出正四棱锥的形状,求它的外接球的表面积,着重考查了正棱锥的性质、多面体的外接球、勾股定理与球的表面积公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=log2(-4x+5)的单调性是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=3ax-2a+1在区间(-1,1)内存在x0,使f(x0)=0,则实数a的取值范围是(  )
A.$(-1,\frac{1}{5})$B.$(-\frac{1}{5},+∞)$C.$(-∞,-1)∪(\frac{1}{5},+∞)$D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于函数f(x)=$\frac{a}{2}$-$\frac{{2}^{x}}{{2}^{x}+1}$(a∈R).
(1)探讨函数f(x)的单调性;
(2)是否存在实数a,使函数f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,Sn为数列{an}的前n项和,当n≥2时,${a_n},{S_n},{S_n}-\frac{1}{2}$成等比数列,则an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2n-1}-\frac{1}{2n-3},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$和实数λ,下列正确的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0B.若λ$\overrightarrow{a}$=0,则λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$
C.若$\overrightarrow{a}$2=$\overrightarrow{b}$2,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边经过点(-2,1),则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若存在实数m,n,使得$\left\{\begin{array}{l}{\frac{1}{{e}^{x}}-\frac{a}{x}≥0}\\{x>0}\end{array}\right.$的解集为[m,n],则a的取值范围为(  )
A.($\frac{1}{{e}^{x}}$,e)B.(0,$\frac{1}{{e}^{x}}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=|2x-2|+1,g(x)=x2+2x-$\frac{1}{2}$.
(1)解不等式f(x)≥3-x;
(2)若对?x∈R,$\frac{1}{2}$f(x)+|x+1|>g(m)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案