分析 画出图形,正四棱锥P-ABCD的底面是正方形,推出底面中心到顶点的距离为球的半径,求出球的表面积.
解答
解:正四棱锥P-ABCD的底面是正方形,对角线的长为2$\sqrt{2}$,如图,
因为P-ABCD是所有棱长均为2的正四棱锥,所以△PAC与△DPB都是等腰直角三角形,中心到P,到A,B,C,D的距离相等,是外接球的半径R,R2+($\sqrt{2}$)2=22,解得R=$\sqrt{2}$,
∴球的表面积S=4π($\sqrt{2}$)2=8π.
故答案为:8π.
点评 本题给出正四棱锥的形状,求它的外接球的表面积,着重考查了正棱锥的性质、多面体的外接球、勾股定理与球的表面积公式等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(-1,\frac{1}{5})$ | B. | $(-\frac{1}{5},+∞)$ | C. | $(-∞,-1)∪(\frac{1}{5},+∞)$ | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=0或$\overrightarrow{b}$=0 | B. | 若λ$\overrightarrow{a}$=0,则λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$ | ||
| C. | 若$\overrightarrow{a}$2=$\overrightarrow{b}$2,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{{e}^{x}}$,e) | B. | (0,$\frac{1}{{e}^{x}}$) | C. | (0,$\frac{1}{2e}$) | D. | (0,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com