精英家教网 > 高中数学 > 题目详情
17.游客从某旅游景区的景点A处至景点C处有两条线路,线路1是从A沿直线步行到C,线路2是先从A沿直线步行到景点B处,然后从B沿直线步行道C,现有甲乙两位游客从A处同时出发匀速步行,甲的速度是乙的速度的$\frac{11}{9}$倍,甲走线路2,乙走线路1,最后他们同时到达C处,经测量,AB=1040m,BC=500m,则sin∠BAC等于(  )
A.$\frac{5}{13}$B.$\frac{3}{5}$C.$\frac{3}{8}$D.$\frac{7}{24}$

分析 通过设乙的速度为x(m/s),则甲的速度为$\frac{11}{9}$x(m/s),利用两人达到的时间相等列出表达式、计算可知AC=1260m,进而利用余弦定理及平方关系计算即得结论.

解答 解:依题意,设乙的速度为x(m/s),则甲的速度为$\frac{11}{9}$x(m/s),
∵AB=1040m,BC=500m,
∴$\frac{AC}{x}$=$\frac{1040+500}{\frac{11}{9}x}$,
解得:AC=1260m,
∴△ABC为锐角三角形,
由余弦定理可知cos∠BAC=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{104{0}^{2}+126{0}^{2}-50{0}^{2}}{2×1040×1260}$=$\frac{84}{91}$,
∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\sqrt{1-(\frac{84}{91})^{2}}$=$\frac{35}{91}$=$\frac{5}{13}$,
故选:A.

点评 本题考查函数模型的选择与应用,涉及余弦定理、平方关系等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一几何体的三视图如图所示,其中侧(左)视图和俯视图都是腰长为2的等腰直角三角形,则此几何体体积的大小为(  )
A.3B.4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=2-sin2x是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为2π的奇函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2.
(1)求数列{an}的通项公式an
(2)设${b_1}=\frac{1}{2},{b_n}=\frac{a_n}{{{S_{n-1}}•{S_n}}}(n≥2)$,求证:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a-b)2+6,△ABC的面积为$\frac{3\sqrt{3}}{2}$,则C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0).
(1)若渐近线与圆(x-2)2+y2=1想切,求双曲线的离心率;
(2)若存在过右焦点F的直线与双曲线C相交于A,B两点且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,求双曲线离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U为整数集Z,若集合A={x|y=$\sqrt{1-x}$,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁UB)=(  )
A.{2}B.{1}C.[-2,0]D.{-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1},且A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数$y=\frac{4}{x}$的图象交于A、B两点,则四边形MAOB的面积为10.

查看答案和解析>>

同步练习册答案