【题目】已知椭圆:()的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点到直线的距离等于,则椭圆的焦距长为()
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知f(x)=lgx+1(1≤x≤100),则g(x)=f2(x)+f(x2)的值域为( )
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计) 即为中奖.
乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.
问:购买该商品的顾客在哪家商场中奖的可能性大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,斜率为的直线与椭圆交于, 两点,点在直线的左上方.若,且直线, 分别与轴交于, 点,求线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程.
(Ⅱ)若, 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(1+x)+lg(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的离心率为,短轴的一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com